Educación e Inteligencia Artificial: Nodos temáticos de inmersión
DOI:
https://doi.org/10.21556/edutec.2022.82.2633Palabras clave:
Inteligecia Artificial, educaciaón, sociedad digital, smartificaciónResumen
El artículo examina, desde el punto de vista del discurso científico, algunos de los nodos temáticos más importantes en torno a la relación educación-Inteligencia Artificial. Para tal propósito, fue realizada una revisión de 72 artículos académicos seleccionados de la base de datos ERIC (Education Resources Information Center), que permitió no solo trazar la red tópica a partir de la cual se vienen constituyendo los principales Fenómenos Transversales, el Dispositivo Tecnológico y la Matriz Educativa que ocupa la atención científico-académica en lo que compete a su campo de saber, sino que posibilitó apreciar la smartificación de la educación como uno de los fenómenos más dinámicos que emergen en el nodo definido por términos educación-IA.
Descargas
Citas
Amaral, P., Calado, J. S., Sarraipa, J. £ Jardim-Gonçalves, R. (2022). Runtime Framework for Smartification Projects. In N. Callaos, S. Hashimoto, N. Lace, B. Sánchez, M. Savoie (Eds.), Proceedings of the 13th International Multi-Conference on Complexity, Informatics and Cybernetics: IMCIC 2022, Vol. II, pp. 74-79. International Institute of Informatics and Cybernetics. https://doi.org/10.54808/IMCIC2022.02.74
Barakina, E., Popova, A., Gorokhova, S. £ Voskovskaya, A. (2021). Digital Technologies and Artificial Intelligence Technologies in Education. European Journal of Contemporary Education, 10(2), 285-296. https://bit.ly/3wtLqqE
Batista, A., Thiry, M., Gonçalves, R. £ Fernandes, A. (2019). Using technologies as virtual environments for computer teaching: a systematic review. Informatics in Education, 19(2), 201–221. https://doi.org/10.15388/infedu.2020.10
Baylan, R., McCarthy, K., £ McNamara, D. (2020). Applying Natural Language Processing and Hierarchical Machine Learning Approaches to Text Difficulty Classification. International Journal of Artificial Intelligence in Education, 30, 337–370. https://doi.org/10.1007/s40593-020-00201-7
Chiu, W. (2021). Pedagogy of Emerging Technologies in Chemical Education during the Era of Digitalization and Artificial Intelligence: A Systematic Review. Education sciences, 11(709). https://doi.org/10.3390/educsci11110709
Cuenca, M., £ Hilferty, J. (2007). Introducción a la lingüística cognitiva. Editorial Ariel.
Dias-Valadão, J., £ Andrade, J. (2012). Entre os Sistemas Sociotécnicos e os Conjuntos Sociotécnicos: Tecnologia Social como Mediação Sociotécnica. EnANPAD. Https://bit.ly/3CGj11J
Fedorova, E., £ Skobleva, E. (2020). Application of Blockchain Technology in Higher Education. European Journal of Contemporary Education, 9(3), 552-571. https://bit.ly/3AjTDyL
Ilic, M., Păun, D., Popovic Š., Hadži´ A. £ Jianu A., (2021) Needs and Performance Analysis for Changes in Higher Education and Implementation of Artificial Intelligence, Machine Learning, and Extended Reality. Education sciences, 11(568), 2-21. https://doi.org/10.3390/educsci11100568
Holstein, K., McLaren, B. Y Aleven V. (2019). Co-Designing a Real-Time Classroom Orchestration Tool to Support Teacher–AI Complementarity. Journal of learning analytics, 6(2), 27-52. http://dx.doi.org/10.18608/jla.2019.62.3
Jaiswal, A., Arun, J. (2021). Potential of Artificial Intelligence for transformation of the education system in India. International Journal of Education and Development using Information and Communication Technology, 17(1), 142-158. https://bit.ly/3pEQViz
Lee, Y. (2021). Applying Explainable Artificial Intelligence to Develop a Model for Predicting the Supply and Demand of Teachers by Region. Journal of Education and e-Learning Research, 8(2), 198-205. https://bit.ly/3R69Mia
Lippert, A., Shubeck, K., Morgan, B., Hampton, A. £ Graesser, A. (2020). Technology, Knowledge and Learning, 25(3), 443-463. https://bit.ly/3TdVii0
Marques, L., Gresse, C. £ Hauck, J. (2020). Teaching Machine Learning in School: A Systematic Mapping of the State of the Art. Informatics in Education, 19(2), 283–32. https://doi.org/10.15388/infedu.2020.14
Martínez, M. (2006). La investigación cualitativa (síntesis conceptual). Revista de Investigación en Psicología, 09(01), 123-146. Https://doi.org/10.15381/rinvp.v9i1.4033
Moraes, R. £ Galiazzi M. (2006). Análise textual discursiva: processo reconstrutivo de múltiplas faces. Ciência & educação, 12(1), 117-128. https://bit.ly/3TbZejg
Moreno-Esteva, E., White, S., Wood, J. £ Black, A. (2018). Application of mathematical and machine learning techniques to analyse eye tracking data enabling better understanding of children's visual cognitive behaviours. Frontline Learning Research, 6(3), 72-84. https://doi.org/10.14786/flr.v6i3.365
Morozov Evgeny (2013). To save everithing, click here. The folly of technological solutionism. PublicAffairs
Mourdi, Y., Sadgal, M., Fathi W. £ Kabtane, H. (2020). A machine learning baed approach to enhance MOOC users' classification. Turkish Online Journal of Distance Education, 21(2), 47-68. https://doi.org/10.17718/tojde.727976
Qushem, U., Christopoulos, A., Oyelere, S., Ogata, H. £ Laakso, M. (2021). Multimodal Technologies in Precision Education: Providing New Opportunities or Adding More Challenges? Education sciences, 11(338), 2-19. 8. https://doi.org/10.3390/educsci11070338
Sabatés, L., £ Sala-Roca, J. (2020). La revisión de la literatura científica: Pautas, procedimientos y criterios de calidad. Universidad de Barcelona.
Singer, W. (2021). Differences betweem Natural and Artificial Cognitive Systems. In: VON BRAUN, Joachin; ARCHER, Margaret; REICHBERG, Gregory. Robotics, AI and Humanity. Springer. Https://doi.org/10.1007/978-3-030-54173-6_2
Statista (Ed.) (2021). Private investments in AI by geographical área 2020. https://bit.ly/3AK52t5
Statista (Ed.) (2019). Number of AI patent applications worldwide 2019, by company. https://bit.ly/3QLWvve
Terzopoulos, G £ Satratzemi, M. (2020) Voice Assistants and smart speakers in everyday life and in education. Informatics in Education, 19(3), 473–49. https://doi.org/10.15388/infedu.2020.21
Trask, R. L. (2004). Dicionário de linguagem e lingüística. Contexto. United Nations Educational, Scientific and Cultural Organization (Ed.) (2021). Recommendation on the ethics of Artificial Intelligence. https://bit.ly/3Adr3yQ
Tzeng, J., Lee, C., Huang, N., Huang, H. £ Lai, C. (2022). MOOC Evaluation System Based on Deep Learning. International Review of Research in Open and Distributed Learning Volume, 23(1), 21-40. https://doi.org/10.19173/irrodl.v22i4.5417
United Nations Educational, Scientific and Cultural Organization (Ed.) (n.d) Distance learning solutions. https://bit.ly/3QO8usi
Van-Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society, 12(2), 197-208. https://doi.org/10.24908/ss.v12i2.4776
Yan-Ing, L. £ Grossman G. (2022). Robots and AI: A new economic era. Routledge. https://doi.org/10.4324/9781003275534
Yaras, Z. £ Öztürk F. (2022). Society 5.0 in Human Technology Integration: Digital Transformation in Educational Organizations. International Journal of Progressive Education, 18(1), 458-474. https://doi.org/10.29329/ijpe.2022.426.26
Zhang, D., Mishra, S., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., Lyons, T., Manyika, J., Niebles,J., Sellitto, M., Shoham, Y., Clark,J., & Perrault,R. (2021). Artificial Intelligence Index Report 2021. Human-Centered AI Institute, Stanford University. Https://stanford.io/3q4dlej
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Con la entrega del trabajo, los autores ceden los derechos de publicación a la revista Edutec. Por su parte, Edutec autoriza su distribución siempre que no se altere su contenido y se indique su origen. Al final de cada artículo publicado en Edutec se indica cómo se debe citar.
La dirección y el consejo de redacción de Edutec Revista Electrónica de Tecnología Educativa, no aceptan ninguna responsabilidad sobre las afirmaciones e ideas expresadas por los autores en sus trabajos.