Diseño y validación del cuestionario de conocimiento y percepciones sobre Inteligencia Artificial Generativa para futuros docentes
DOI:
https://doi.org/10.21556/edutec.2025.92.3841Palabras clave:
Formación docente, Estudio de validación, Inteligencia Artificial, EvaluaciónResumen
La investigación tuvo como objetivo diseñar y validar un cuestionario sobre conocimientos y percepciones de futuros docentes en relación con la Inteligencia Artificial Generativa. Se realizó un estudio de validación descriptivo transversal e instrumental que incluyó validez de contenido utilizando Delphi con 11 especialistas, análisis estadísticos de fiabilidad y análisis de los constructos latentes. La muestra fue de 268 estudiantes de pedagogía. Los resultados arrojaron una validez de contenido apropiada, con consenso y estabilidad aceptables al finalizar la segunda ronda y alta fiabilidad con valores de α de Cronbach= 0,928 y de ω de McDonald's= 0,927. El índice KMO (0,824) permitió realizar un análisis factorial exploratorio donde se retuvieron seis factores, confirmándose la estructura factorial mediante un análisis factorial confirmatorio, obteniéndose índices de ajuste aceptables (χ2/gl=1,422, CFI=0,995, RMSEA=0,063). En conclusión, el instrumento tiene propiedades psicométricas robustas y es adecuado para evaluar percepciones y conocimientos de futuros docentes sobre la IA.
Descargas
Citas
Alejandro, I. M. V., Sanchez, J. M. P., Sumalinog, G. G., Mananay, J. A., Goles, C. E., & Fernandez, C. B. (2024). Pre-service teachers’ technology acceptance of artificial intelligence (AI) applications in education. STEM Education, 4(4), 445–465. https://doi.org/10.3934/steme.2024024 DOI: https://doi.org/10.3934/steme.2024024
Almonacid-Fierro, A., Feu, S., & Vizuete Carrizosa, M. (2018). Validación de un cuestionario para medir el Conocimiento Didáctico del Contenido en el profesorado de Educación Física. Retos, 34, 132–137. https://doi.org/10.47197/retos.v0i34.58590 DOI: https://doi.org/10.47197/retos.v0i34.58590
Álvarez-Herrero, J.-F. (2024). Opinion of university students in education on the use of AI in their academic tasks. European Public & Social Innovation Review, (9), 1–18. https://doi.org/10.31637/epsir-2024-534 DOI: https://doi.org/10.31637/epsir-2024-534
Ato, M., López-García, J. J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 29(3), 1038–1059. https://doi.org/10.6018/analesps.29.3.178511 DOI: https://doi.org/10.6018/analesps.29.3.178511
Ayuso-del Puerto, D., & Gutiérrez-Esteban, P. (2022). La Inteligencia Artificial como recurso educativo durante la formación inicial del profesorado. RIED. Revista Iberoamericana de Educación a Distancia, 25(2), 347–362. https://doi.org/10.5944/ried.25.2.32332 DOI: https://doi.org/10.5944/ried.25.2.32332
Borg, D. N., Bach, A. J. E., O’Brien, J. L., & Sainani, K. L. (2022). Calculating sample size for reliability studies. PM&R, 14(8), 1018–1025. https://doi.org/10.1002/pmrj.12850 DOI: https://doi.org/10.1002/pmrj.12850
Cabero Almenara, J., & Infante Moro, A. (2014). Empleo del método Delphi y su empleo en la investigación en comunicación y educación. Edutec, Revista Electrónica de Tecnología Educativa, (48), a272. https://doi.org/10.21556/edutec.2014.48.187 DOI: https://doi.org/10.21556/edutec.2014.48.187
Cabero-Almenara, J., Barroso-Osuna, J., Palacio-Rodríguez, A., y Llorente-Cejudo, C. (2021). Evaluación de t-MOOC universitario sobre competencias digitales docentes mediante juicio de expertos según el Marco DigCompEdu. Revista de Educación a Distancia (RED), 21(67), Artículo 2. https://doi.org/10.6018/red.476891 DOI: https://doi.org/10.6018/red.476891
Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.48550/arXiv.2305.00290 DOI: https://doi.org/10.1186/s41239-023-00411-8
Chávez Solis, M. E., Labrada Martínez, E., Carbajal Degante, E., Pineda Godoy, E., & Alatristre Martínez, Y. (2023). Inteligencia artificial generativa para fortalecer la educación superior. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades 4(3), 767–784. https://doi.org/10.56712/latam.v4i3.1113 DOI: https://doi.org/10.56712/latam.v4i3.1113
Cóndor-Herrera, O., Arias-Flores, H., Jadán-Guerrero, J., Ramos-Galarza, C. (2021). Artificial Intelligence and Tomorrow’s Education. In: Ahram, T.Z., Karwowski, W., Kalra, J. (eds) Advances in Artificial Intelligence, Software and Systems Engineering. AHFE 2021. Lecture Notes in Networks and Systems, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-80624-8_23 DOI: https://doi.org/10.1007/978-3-030-80624-8_23
Costello, A., & Osborne, J. (2005). Exploratory Factor Analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research and Evaluation, 10(1), 7. https://doi.org/10.7275/jyj1-4868
Cotobal Calvo, E. M., Bocchino, A., Mata-Pérez, C., Cruz-Barrientos, A., Naranjo-Márquez, M., & Palazón-Fernández, J. L. (2024). Content Validation of the Self-Medication Scale and Trust in Online Resources: Deepening Digital Access to Health. Nursing Reports, 14(3), 1897–1905. https://doi.org/10.3390/nursrep14030141 DOI: https://doi.org/10.3390/nursrep14030141
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 DOI: https://doi.org/10.2307/249008
Escobar Hernández, J.C. (2021). La Inteligencia Artificial y la enseñanza de lenguas: una aproximación al tema. Decires. Revista del Centro de Enseñanza para Extranjeros, 21(25), 29-44. https://doi.org/10.22201/cepe.14059134e.2021.21.25.3 DOI: https://doi.org/10.22201/cepe.14059134e.2021.21.25.3
Espinoza-San Juan, J., Raby, M. D., & Sagredo-Lillo, E. (2024). Validación de un cuestionario sobre las percepciones y usos de la IA-Gen entre estudiantes de pedagogía. Revista Ibérica de Sistemas e Tecnologias de Informação, (E70), 574-585. https://www.proquest.com/docview/3094869188/abstract/914B009A349B47F6PQ/1
Gallent-Torres, C., Zapata-González, A., & Ortego-Hernando, J. L. (2023). El impacto de la inteligencia artificial generativa en educación superior: una mirada desde la ética y la integridad académica. RELIEVE. Revista Electrónica de Investigación y Evaluación Educativa, 29(2). https://doi.org/10.30827/relieve.v29i2.29134 DOI: https://doi.org/10.30827/relieve.v29i2.29134
Goenechea, C., & Valero-Franco, C. (2024). Educación e inteligencia artificial: Un análisis desde la perspectiva de los docentes en formación. REICE. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 22(2), 33-50. https://doi.org/10.15366/reice2024.22.2.002 DOI: https://doi.org/10.15366/reice2024.22.2.002
Hayes, A. F., & Coutts, J. J. (2020). Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But…. Communication Methods and Measures, 14(1), 1–24. https://doi.org/10.1080/19312458.2020.1718629 DOI: https://doi.org/10.1080/19312458.2020.1718629
Hernández, R., & Mendoza, C. (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta. Editorial Mc Graw Hill Education
Kaiser, H. F. (1974). An index of factorial simplicity. psychometrika, 39(1), 31-36. https://link.springer.com/article/10.1007/bf02291575 DOI: https://doi.org/10.1007/BF02291575
Kavitha, K., & Joshith, V. P. (2024). Artificial intelligence powered pedagogy: Unveiling higher educators’ acceptance with extended TAM. Journal of University Teaching and Learning Practice, 21(8). https://doi.org/10.53761/s1pkk784 DOI: https://doi.org/10.53761/s1pkk784
Kong, S. C., Yang, Y., & Hou, C. (2024). Examining teachers’ behavioural intention of using generative artificial intelligence tools for teaching and learning based on the extended technology acceptance model. Computers and Education: Artificial Intelligence, 7, 100328. https://doi.org/10.1016/j.caeai.2024.100328 DOI: https://doi.org/10.1016/j.caeai.2024.100328
López Gómez, E. (2018). El método Delphi en la investigación actual en educación: una revisión teórica y metodológica. Educación XX1, 21(1), 17-40. https://doi.org/10.5944/educXX1.20169 DOI: https://doi.org/10.5944/educxx1.20169
López-Regalado, Ó., Núñez-Rojas, N., López-Gil, Ó. R., & Sánchez-Rodríguez, J. (2024). Análisis del uso de la inteligencia artificial en la educación universitaria: una revisión sistemática. Píxel-Bit. Revista de Medios y Educación, 70, 97-122. https://doi.org/10.12795/pixelbit.106336 DOI: https://doi.org/10.12795/pixelbit.106336
Lozano, A., & Blanco Fontao, C. (2023). Is the Education System Prepared for the Irruption of Artificial Intelligence? A Study on the Perceptions of Students of Primary Education Degree from a Dual Perspective: Current Pupils and Future Teachers. Education Sciences, 13(7), 733. https://doi.org/10.3390/educsci13070733 DOI: https://doi.org/10.3390/educsci13070733
Luckin, R., Cukurova, M., Kent, C., & Du Boulay, B. (2022). Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, 3, 100076. https://doi.org/10.1016/j.caeai.2022.100076 DOI: https://doi.org/10.1016/j.caeai.2022.100076
Lund, B.D. (2020). Review of the Delphi method in library and information science research. Journal of Documentation, 76(4), 929-960. https://doi.org/10.1108/JD-09-2019-0178 DOI: https://doi.org/10.1108/JD-09-2019-0178
Matas, A. (2018). Diseño del formato de escalas tipo Likert: un estado de la cuestión. Revista electrónica de investigación educativa, 20(1), 38-47. https://doi.org/10.24320/redie.2018.20.1.1347 DOI: https://doi.org/10.24320/redie.2018.20.1.1347
Malkewitz, C. P., Schwall, P., Meesters, C., & Hardt, J. (2023). Estimating reliability: A comparison of Cronbach's α, McDonald's ωt and the greatest lower bound. Social Sciences & Humanities Open, 7(1).https://doi.org/10.1016/j.ssaho.2022.100368 DOI: https://doi.org/10.1016/j.ssaho.2022.100368
Mayorga, M. J., & Ruiz, V. M. (2002). Muestreos utilizados en investigación educativa en España. RELIEVE - Revista Electrónica de Investigación y Evaluación Educativa, 8(2), 159–165. https://bit.ly/3P5WYJe
Montero, I., & León, O. G. (2005). Sistema de clasificación del método en los informes de investigación en Psicología. International Journal of Clinical and Health Psychology, 5 (1), 115–127.
Ng, D. T. K., Wu, W., Leung, J. K. L., Chiu, T. K. F., & Chu, S. K. W. (2023). Design and validation of the AI literacy questionnaire: The affective, behavioural, cognitive and ethical approach. British Journal of Educational Technology, 55(3), 1082–1104. https://doi.org/10.1111/bjet.13411 DOI: https://doi.org/10.1111/bjet.13411
Osborne, Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “Ideas-about-Science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692-720. https://doi.org/10.1002/tea.10105 DOI: https://doi.org/10.1002/tea.10105
Reguant-Álvarez, M., & Torrado-Fonseca, M. (2016). El método Delphi. REIRE, Revista d’Innovació i Recerca en Educació, 9(1), 87-102. https://doi.org/10.1344/reire2016.9.1916 DOI: https://doi.org/10.1344/reire2016.9.1916
Ríos Hernández, I. N., Mateus, J. C., Rivera Rogel, D., & Rosa Ávila Meléndez, L. (2024). Percepciones de estudiantes latinoamericanos sobre el uso de la inteligencia artificial en la educación superior. Austral Comunicación, 13(1), e01302. https://doi.org/10.26422/aucom.2024.1301.rio DOI: https://doi.org/10.26422/aucom.2024.1301.rio
Runge, I., Hebibi, F., & Lazarides, R. (2025). Acceptance of pre-service teachers towards artificial intelligence (AI): The role of AI-related teacher training courses and AI-TPACK within the technology acceptance model. Education Sciences, 15(2), 167. https://doi.org/10.3390/educsci15020167 DOI: https://doi.org/10.3390/educsci15020167
Selwyn, N. (2020). ¿Deberían los robots sustituir al profesorado?: la IA y el futuro de la educación. Ediciones Morata.
Serrano, J. L., & Moreno-García, J. (2024). Inteligencia artificial y personalización del aprendizaje:¿innovación educativa o promesas recicladas?. Edutec, Revista Electrónica de Tecnología Educativa, (89), 1-17. https://doi.org/10.21556/edutec.2024.89.3577 DOI: https://doi.org/10.21556/edutec.2024.89.3577
Solano-Barliza, A. D., Ojeda, A. D., & Aarón-Gonzalvez, M. (2024). Análisis cuantitativo de la percepción del uso de inteligencia artificial ChatGPT en la enseñanza y aprendizaje de estudiantes de pregrado del caribe colombiano. Formación Universitaria, 17(3), 129-138. http://dx.doi.org/10.4067/s0718-50062024000300129 DOI: https://doi.org/10.4067/s0718-50062024000300129
Swindell, A., Greeley, L., Farag, A., & Verdone, B. (2024). Against Artificial Education: Towards an Ethical Framework for Generative Artificial Intelligence (AI) Use in Education. Online Learning, 28(2), n2. DOI: https://doi.org/10.24059/olj.v28i2.4438
Uwosomah, E. E., & Dooly, M. (2025). It Is Not the Huge Enemy: Preservice Teachers’ Evolving Perspectives on AI. Education Sciences, 15(2), 152. https://doi.org/10.3390/educsci15020152 DOI: https://doi.org/10.3390/educsci15020152
Vankúš, P. (2024). Generative Artificial Intelligence on Mobile Devices in the University Preparation of Future Teachers of Mathematics. International Journal of Interactive Mobile Technologies (IJIM), 18(18), 19–33. https://doi.org/10.3991/ijim.v18i18.51221 DOI: https://doi.org/10.3991/ijim.v18i18.51221
Wang, K., Ruan, Q., Zhang, X., Fu, C., & Duan, B. (2024). Pre-Service Teachers’ GenAI Anxiety, Technology Self-Efficacy, and TPACK: Their Structural Relations with Behavioral Intention to Design GenAI-Assisted Teaching. Behavioral Sciences, 14(5), 373. https://doi.org/10.3390/bs14050373 DOI: https://doi.org/10.3390/bs14050373
Watkins, M. W. (2018). Exploratory factor analysis: A guide to best practice. Journal of black psychology, 44(3), 219-246. https://doi.org/10.1177/009579841877180 DOI: https://doi.org/10.1177/0095798418771807
Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for structural equation models. Educational and Psychological Measurement, 73(6), 913–934. https://doi.org/10.1177/0013164413495237 DOI: https://doi.org/10.1177/0013164413495237
Yilmaz, H. (2018). Measuring egocentric, adaptive and pathological forms of selfishness: scale adaptation study. Journal of Academic Social Science, 6(74), 45-57. http://dx.doi.org/10.16992/ASOS.13889 DOI: https://doi.org/10.16992/ASOS.13889
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Edutec, Revista Electrónica de Tecnología Educativa

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Con la entrega del trabajo, los autores ceden los derechos de publicación a la revista Edutec. Por su parte, Edutec autoriza su distribución siempre que no se altere su contenido y se indique su origen. Al final de cada artículo publicado en Edutec se indica cómo se debe citar.
La dirección y el consejo de redacción de Edutec Revista Electrónica de Tecnología Educativa, no aceptan ninguna responsabilidad sobre las afirmaciones e ideas expresadas por los autores en sus trabajos.