Assessment in Mathematics education: contributions from chatbots and future mathematics teachers
DOI:
https://doi.org/10.21556/edutec.2024.89.3243Keywords:
Inteligencia Artificial, Chatbots, Futuros profesores de matemática, EvaluaciónAbstract
The assessment of student learning is a relevant research topic for the didactic of mathematics. Assessment in mathematics requires much more than solving an exercise. It is about evaluating the entire process. In this regard, the design of evaluations is neither trivial nor immediate. It requires training, clear objectives and relevant proposals. This work analyzes the evaluations proposed by three future mathematics teachers and by three chatbots based on generative Artificial Intelligence (AI) models. The types of evaluations proposed on notions of statistics (population and sample) are compared and the functionality of chatbots as possible assistants for the generation of different types of evaluations is examined. It is concluded that chatbots might become valuable assistants when creating evaluations, since they offer different types of evaluations, both traditional, such as a written test, and non-traditional ones, such as a research project.
Downloads
References
Adair, A., Pedro, M.S., Gobert, J., Segan, E. (2023). Real-Time AI-Driven Assessment and Scaffolding that Improves Students’ Mathematical Modeling during Science Investigations. Artificial Intelligence in Education. AIED 2023. DOI: https://doi.org/10.1007/978-3-031-36272-9_17
Adiguzel, T., Kaya, M. H., Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3), ep429. DOI: https://doi.org/10.30935/cedtech/13152
Álvarez, J. (2005). Evaluar para conocer, examinar para excluir. Madrid: Morata.
Brown, T., Mann, B., Ryder, N., Subbiah, J. Kaplan, M., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A. Krueger, G., Henighan, t., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, L., Amodei, D. (2020). Language models are few-shot learners. In: Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20), 1877–1901.
Chevallard, Y. (2004). Le moment de l’évaluation, ses objets, ses fonctions : déplacements, ruptures, refondation. Journée de formation de formateurs. IUFM d’Aix-Marseille, 1-6 http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=44
Chevallard, Y. (2012). ¿Cuál puede ser el valor de evaluar? Notas para desprenderse de la evaluación ‘como capricho y miniatura’. En G. Fioriti, C. Cuesta [comps.]. La evaluación como problema. Aproximaciones desde las didácticas específicas (pp. 9-21). Buenos Aires: Miño y Dávila-UNSAM Edita.
Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A.…, and Fiedel, N. (2022). PaLM: Scaling language modeling with pathways, Journal of Machine Learning Research 24(240), 1–113.
Fernández, J. (2006). ¿Evaluación? No gracias, calificación. Cuadernos de Pedagogía, 243, 92-97.
Flores Samaniego, A., Gómez Reyes, A. (2009). Aprender Matemática, haciendo Matemática: la evaluación en el aula. Educación Matemática, 21(2), 117-142.
Hamodi, C., López Pastor, V., López Pastor, A. (2015). Medios, técnicas e instrumentos de evaluación formativa y compartida del aprendizaje en educación superior. Perfiles educativos, 37(147), 146-161. Isaza, G. (2002). Análisis, Interpretación y Construcción Teórica en la Investigación Cualitativa. Centro de educación a distancia. Universidad de Manizales. DOI: https://doi.org/10.1016/j.pe.2015.10.004
Luzano, J. (2024). Assessment in Mathematics Education in the Sphere of Artificial Intelligence: A Systematic Review on Its Threats and Opportunities. International Journal of Academic Multidisciplinary Research (IJAMR). 8(2),100-104.
Martínez-Comesaña, M., Rigueira-Díaz, X., Larrañaga-Janeiro, A., Martínez-Torres, J., Ocarranza-Prado, I., Kreibel, D. (2023). Impacto de la inteligencia artificial en los métodos de evaluación en la educación primaria y secundaria: revisión sistemática de la literatura. Revista de Psicodidáctica. 18(2), 93-103. DOI: https://doi.org/10.1016/j.psicod.2023.06.001
Méndez-Mantuano, M. O., Morán, M. Y. O., Mayorga, I. I. C., Valdez, A. Y. L., Rosado, Ángel R. H., & Robles, D. V. A. (2024). La evaluación académica en la era de la inteligencia artificial (IA). South Florida Journal of Development, 5(1), 119–148. DOI: https://doi.org/10.46932/sfjdv5n1-010
Monash University (4 de abril de 2024). AI and assessment. https://www.monash.edu/learning-teaching/teachhq/Teaching-practices/artificial-intelligence/ai-and-assessment
Nasution, N. E. A. (2023). Using artificial intelligence to create biology multiple choice questions for higher education. Agricultural and Environmental Education, 2(1), em002. DOI: https://doi.org/10.29333/agrenvedu/13071
Owan, V. J., Abang, K.B., Idika, D.O., Etta, E.O., Bassey, B.A. (2023). Exploring the potential of artificial intelligence tools in educational measurement and assessment. EURASIA Journal of Mathematics, Science and Technology Education, 19(8), em2307. DOI: https://doi.org/10.29333/ejmste/13428
Parra, V., Sureda, P., Corica, A., Schiaffino, S., Godoy, D. (2024). Can generative AI solve Geometry problems? Strengths and weaknesses of LLMs for geometric reasoning in Spanish. International Journal of Interactive Multimedia and Artificial Intelligence. 8(5), 65-74. DOI: https://doi.org/10.9781/ijimai.2024.02.009
Sánchez Mendiola, M. (2023). La inteligencia artificial generativa y la evaluación: ¿Qué pasará con los exámenes? Investigación en Educación Médica, 12(48), 5-8. DOI: https://doi.org/10.22201/fm.20075057e.2023.48.23550
Sanmartí, N. (2007). 10 ideas clave: evaluar para aprender. Madrid: Graó
Santos Guerra, M. (2003). Una flecha en la diana: la evaluación como aprendizaje. Madrid: Narcea.
Scriven, M. (1967). The methodology of evaluation. En Stake, R: Perspect¡ves of curriculum evaluation, American Educational Research Association. Monograph series on curriculum. Rand McNally, 38-39.
Tobler, S. (2024). Smart grading: A generative AI-based tool for knowledge-grounded answer evaluation in educational assessments, MethodsX, 12, 102531. DOI: https://doi.org/10.1016/j.mex.2023.102531
U.S. Department of Education (2023). Office of Educational Technology, Artificial Intelligence and Future of Teaching and Learning: Insights and Recommendations, Washington, DC, USA.
Wan, T. & Chen, Z. (2024). Exploring Generative AI assisted feedback writing for students' written responses to a physics conceptual question with prompt engineering and few-shot learning. arXiv:2311.06180. DOI: https://doi.org/10.1103/PhysRevPhysEducRes.20.010152
Webb, N. (1992). Assessment of Students Knowledge of Mathematics. Steps Toward a Theory. En D. Grouws (Ed.) Handbook of Research on Mathematics Teaching and Learning. New York: Macmillan.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Edutec. Revista Electrónica de Tecnología Educativa

This work is licensed under a Creative Commons Attribution 4.0 International License.
By submitting the paper, the authors assign the publication rights to the journal Edutec. For its part, Edutec authorises its distribution as long as its content is not altered and its origin is indicated. At the end of each article published in Edutec, the citation procedure is indicated.
The management and editorial board of Edutec Revista Electrónica de Tecnología Educativa do not accept any responsibility for the statements and ideas expressed by the authors in their work.
Translated with www.DeepL.com/Translator (free version)