Assessment in Mathematics education: contributions from chatbots and future mathematics teachers

Authors

DOI:

https://doi.org/10.21556/edutec.2024.89.3243

Keywords:

Inteligencia Artificial, Chatbots, Futuros profesores de matemática, Evaluación

Abstract

The assessment of student learning is a relevant research topic for the didactic of mathematics. Assessment in mathematics requires much more than solving an exercise. It is about evaluating the entire process. In this regard, the design of evaluations is neither trivial nor immediate. It requires training, clear objectives and relevant proposals. This work analyzes the evaluations proposed by three future mathematics teachers and by three chatbots based on generative Artificial Intelligence (AI) models. The types of evaluations proposed on notions of statistics (population and sample) are compared and the functionality of chatbots as possible assistants for the generation of different types of evaluations is examined. It is concluded that chatbots might become valuable assistants when creating evaluations, since they offer different types of evaluations, both traditional, such as a written test, and non-traditional ones, such as a research project.

Downloads

Download data is not yet available.

Author Biographies

PhD, NIEM - CONICET-UNCPBA (Argentina)

Assistant Researcher at CONICET (National Scientific and Technological Research Council, Argentina), member of the NIEM Research Center in Mathematics Education and Adjunct Professor in the Teacher Training Department at the Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA). She has a Bachelor degree in Mathematics Education and a Mathematics Teacher degree. She holds a degree of Doctor in Science Teaching, with a Major in Mathematics from the UNCPBA obtained in 2012. She completed a short research stay at the University of Barcelona, ​​Spain, in 2022. Her research areas are Mathematics Education, initial and continuing university training of mathematics teachers. She was a member of the organizing committee of the 1st International Congress on Artificial Intelligence and Education (CIIAE 2024).

Ana Corica, NIEM (CONICET-UNCPBA) (Argentina)

Independent Researcher at CONICET (National Scientific and Technological Research Council, Argentina), member of the NIEM Research Center in Mathematics Education and Adjunct Professor in the Teacher Training Department at the Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA). She has a degree of Doctor in Education Sciences from the UNC (Universidad Nacional de Córdoba), obtained in 2010. She has a Bachelor degree in Mathematics Education and a degree of Teacher in Mathematics and Physics from UNCPBA. Her research areas are Mathematics Education, initial and continuing training of mathematics teachers. She was a member of the organizing committee of the 1st International Congress on Artificial Intelligence and Education (CIIAE 2024).

Verónica Parra, NIEM - CONICET-UNCPBA (Argentina)

Adjunct Researcher at CONICET (National Scientific and Technological Research Council, Argentina), member of the NIEM Research Center in Mathematics Education and Adjunct Professor in the Teacher Training Department at the Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA). She holds a Doctor in Science Teaching, with a Major in Mathematics from the UNCPBA obtained in 2013. She holds a Bachelor degree in Mathematics Education and a Mathematics Teacher degree from UNCPBA. She completed her Postdoctoral Studies at the University of Brest (France) in 2016/2017. Her research areas are Mathematics Education, initial and continuing university training of mathematics teachers. She was a member of the organizing committee of the 1st International Congress on Artificial Intelligence and Education (CIIAE 2024).

Daniela Godoy, ISISTAN - UNCPBA/CONICET (Argentina)

Principal Researcher at CONICET (National Scientific and Technical Research Council, Argentina), an Associate Professor at the Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Argentina, and a member of the ISISTAN Research Institute  (UNCPBA/CONICET). She holds a degree of Doctor in Computer Science from UNCPBA, obtained in 2005. Her areas of ​​research are artificial intelligence, recommendation systems and text analysis. She was a member of the Organizing Committee of the 1st International Congress on Artificial Intelligence and Education (CIIAE 2024).

Silvia Schiaffino, ISISTAN - UNCPBA/CONICET (Argentina)

Principal Researcher at CONICET (National Scientific and Technical Research Council, Argentina), an Associate Professor at the Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Argentina, and a member of the ISISTAN Research Institute  (UNCPBA/CONICET). She has a degree of Doctor in Computer Science from UNCPBA, obtained in 2004. Her areas of ​​research are artificial intelligence, personalization and user profiling. She was a member of the Organizing Committee of the 1st International Congress on Artificial Intelligence and Education (CIIAE 2024).

References

Adair, A., Pedro, M.S., Gobert, J., Segan, E. (2023). Real-Time AI-Driven Assessment and Scaffolding that Improves Students’ Mathematical Modeling during Science Investigations. Artificial Intelligence in Education. AIED 2023. DOI: https://doi.org/10.1007/978-3-031-36272-9_17

Adiguzel, T., Kaya, M. H., Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3), ep429. DOI: https://doi.org/10.30935/cedtech/13152

Álvarez, J. (2005). Evaluar para conocer, examinar para excluir. Madrid: Morata.

Brown, T., Mann, B., Ryder, N., Subbiah, J. Kaplan, M., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A. Krueger, G., Henighan, t., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, L., Amodei, D. (2020). Language models are few-shot learners. In: Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20), 1877–1901.

Chevallard, Y. (2004). Le moment de l’évaluation, ses objets, ses fonctions : déplacements, ruptures, refondation. Journée de formation de formateurs. IUFM d’Aix-Marseille, 1-6 http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=44

Chevallard, Y. (2012). ¿Cuál puede ser el valor de evaluar? Notas para desprenderse de la evaluación ‘como capricho y miniatura’. En G. Fioriti, C. Cuesta [comps.]. La evaluación como problema. Aproximaciones desde las didácticas específicas (pp. 9-21). Buenos Aires: Miño y Dávila-UNSAM Edita.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A.…, and Fiedel, N. (2022). PaLM: Scaling language modeling with pathways, Journal of Machine Learning Research 24(240), 1–113.

Fernández, J. (2006). ¿Evaluación? No gracias, calificación. Cuadernos de Pedagogía, 243, 92-97.

Flores Samaniego, A., Gómez Reyes, A. (2009). Aprender Matemática, haciendo Matemática: la evaluación en el aula. Educación Matemática, 21(2), 117-142.

Hamodi, C., López Pastor, V., López Pastor, A. (2015). Medios, técnicas e instrumentos de evaluación formativa y compartida del aprendizaje en educación superior. Perfiles educativos, 37(147), 146-161. Isaza, G. (2002). Análisis, Interpretación y Construcción Teórica en la Investigación Cualitativa. Centro de educación a distancia. Universidad de Manizales. DOI: https://doi.org/10.1016/j.pe.2015.10.004

Luzano, J. (2024). Assessment in Mathematics Education in the Sphere of Artificial Intelligence: A Systematic Review on Its Threats and Opportunities. International Journal of Academic Multidisciplinary Research (IJAMR). 8(2),100-104.

Martínez-Comesaña, M., Rigueira-Díaz, X., Larrañaga-Janeiro, A., Martínez-Torres, J., Ocarranza-Prado, I., Kreibel, D. (2023). Impacto de la inteligencia artificial en los métodos de evaluación en la educación primaria y secundaria: revisión sistemática de la literatura. Revista de Psicodidáctica. 18(2), 93-103. DOI: https://doi.org/10.1016/j.psicod.2023.06.001

Méndez-Mantuano, M. O., Morán, M. Y. O., Mayorga, I. I. C., Valdez, A. Y. L., Rosado, Ángel R. H., & Robles, D. V. A. (2024). La evaluación académica en la era de la inteligencia artificial (IA). South Florida Journal of Development, 5(1), 119–148. DOI: https://doi.org/10.46932/sfjdv5n1-010

Monash University (4 de abril de 2024). AI and assessment. https://www.monash.edu/learning-teaching/teachhq/Teaching-practices/artificial-intelligence/ai-and-assessment

Nasution, N. E. A. (2023). Using artificial intelligence to create biology multiple choice questions for higher education. Agricultural and Environmental Education, 2(1), em002. DOI: https://doi.org/10.29333/agrenvedu/13071

Owan, V. J., Abang, K.B., Idika, D.O., Etta, E.O., Bassey, B.A. (2023). Exploring the potential of artificial intelligence tools in educational measurement and assessment. EURASIA Journal of Mathematics, Science and Technology Education, 19(8), em2307. DOI: https://doi.org/10.29333/ejmste/13428

Parra, V., Sureda, P., Corica, A., Schiaffino, S., Godoy, D. (2024). Can generative AI solve Geometry problems? Strengths and weaknesses of LLMs for geometric reasoning in Spanish. International Journal of Interactive Multimedia and Artificial Intelligence. 8(5), 65-74. DOI: https://doi.org/10.9781/ijimai.2024.02.009

Sánchez Mendiola, M. (2023). La inteligencia artificial generativa y la evaluación: ¿Qué pasará con los exámenes? Investigación en Educación Médica, 12(48), 5-8. DOI: https://doi.org/10.22201/fm.20075057e.2023.48.23550

Sanmartí, N. (2007). 10 ideas clave: evaluar para aprender. Madrid: Graó

Santos Guerra, M. (2003). Una flecha en la diana: la evaluación como aprendizaje. Madrid: Narcea.

Scriven, M. (1967). The methodology of evaluation. En Stake, R: Perspect¡ves of curriculum evaluation, American Educational Research Association. Monograph series on curriculum. Rand McNally, 38-39.

Tobler, S. (2024). Smart grading: A generative AI-based tool for knowledge-grounded answer evaluation in educational assessments, MethodsX, 12, 102531. DOI: https://doi.org/10.1016/j.mex.2023.102531

U.S. Department of Education (2023). Office of Educational Technology, Artificial Intelligence and Future of Teaching and Learning: Insights and Recommendations, Washington, DC, USA.

Wan, T. & Chen, Z. (2024). Exploring Generative AI assisted feedback writing for students' written responses to a physics conceptual question with prompt engineering and few-shot learning. arXiv:2311.06180. DOI: https://doi.org/10.1103/PhysRevPhysEducRes.20.010152

Webb, N. (1992). Assessment of Students Knowledge of Mathematics. Steps Toward a Theory. En D. Grouws (Ed.) Handbook of Research on Mathematics Teaching and Learning. New York: Macmillan.

Published

30-09-2024

How to Cite

PhD, Corica, A., Parra, V., Godoy, D., & Schiaffino, S. (2024). Assessment in Mathematics education: contributions from chatbots and future mathematics teachers. Edutec, Revista Electrónica De Tecnología Educativa, (89), 64–83. https://doi.org/10.21556/edutec.2024.89.3243

Issue

Section

Special issue: Artificial intelligence in the evaluation and personalization...