Tutores de IA frente a instructores humanos: Percepciones de los estudiantes de educación superior en Hungría y España

Autores/as

DOI:

https://doi.org/10.21556/edutec.2024.89.3523

Palabras clave:

Educación superior, sistemas de tutoría con IA, aprendizaje adaptativo, tecnología educativa, percepciones de los estudiantes

Resumen

La integración de sistemas de tutoría impulsados por IA en la educación superior representa un avance significativo en la tecnología educativa, ofreciendo experiencias de aprendizaje personalizadas y adaptativas. Este estudio investiga las percepciones y expectativas de los estudiantes de educación superior en Hungría y España respecto a los tutores de IA. A pesar de la extensa investigación sobre la eficacia tecnológica de los sistemas de IA, existe un entendimiento limitado sobre las actitudes de los estudiantes en estos contextos culturales específicos. Esta investigación pretende llenar este vacío explorando las expectativas de los estudiantes, sus niveles de satisfacción y los beneficios percibidos de los tutores de IA en comparación con los instructores humanos. Para lograr esto, se administró un cuestionario validado a 184 estudiantes de educaciónsuperior de Hungría y España, capturando datos sobre diversas dimensiones de sus expectativas. Los hallazgos del estudio indican que los estudiantes valoran la adaptabilidad y la orientación continua proporcionada por los tutores de IA, con los estudiantes húngaros mostrando expectativas más altas en comparación con sus homólogos españoles. Estos conocimientos sugieren que los sistemas de tutoría de IA pueden mejorar la experiencia de aprendizaje al abordar las necesidades individuales de los estudiantes de manera más efectiva.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ahmad Hajeer, Universidad Empresarial de Budapest (Hungría)

Dr. Ahmad Hajeer is an assistant professor at Budapest Business University, specializing in the fields of education and marketing. His research focuses on the marketing of higher education, with a particular interest in consumer behavior. With a background in pedagogy, applied linguistics and marketing, Dr. Hajeer brings an interdisciplinary approach to his work, integrating insights from communication, education, and marketing to explore the dynamics of consumer decision-making in educational settings. His recent publications reflect his commitment to advancing understanding in these areas.

Árpád Papp-Váry, Universidad Empresarial de Budapest (Hungría)

Dr. Árpád Papp-Váry has been working in higher education for two decades. He is a habilitated associate professor at Hungary's largest business higher education institution, Budapest Business University, where he also serves as the head of the Marketing Master's Program. Additionally, he leads the Marketing and Tourism Program at the Doctoral School of Economics at Sopron University and is a senior researcher at the Center for Economic Geography and Urban Marketing at Neumann János University in Kecskemét. In addition to his academic roles, he works as a marketing consultant, helping companies with branding and international market entry. He has authored several monographs on branding and frequently appears as an expert in both professional and public media. Since 2013, he has served four terms as Vice President of the Hungarian Marketing Association. In 2023, he became a board member of the European Marketing Confederation.

Citas

Allen, I. E., & Seaman, J. (2017). Digital learning compass: Distance education enrollment report 2017. Babson Survey Research Group.

Al-Shanfari, L., Abdullah, S., Fstnassi, T., & Al-Kharusi, S. (2023). Instructors’ perceptions of intelligent tutoring systems and their implications for studying computer programming in Omani higher education institutions. International Journal of Membrane Science and Technology, 10(2), 947-967. https://doi.org/10.15379/ijmst.v10i2.1395 DOI: https://doi.org/10.15379/ijmst.v10i2.1395

Basri, W. S. (2024). Effectiveness of AI-powered tutoring systems in enhancing learning outcomes. Eurasian Journal of Educational Research, 110, 33-52. 10.14689/ejer.2024.110.003

Byrne, B. M. (2001). Structural equation modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. International Journal of Testing, 1(1), 55-86. DOI: https://doi.org/10.1207/S15327574IJT0101_4

Carbonell, J. R. (1970). AI in CAI: An artificial-intelligence approach to computer-assisted instruction. IEEE Transactions on Man-Machine Systems, 11(4), 190-202. DOI: https://doi.org/10.1109/TMMS.1970.299942

Chan, C. (2023). A comprehensive AI policy education framework for higher education institutions. Journal of Educational Technology, 32(4), 215-230. https://doi.org/10.1080/10494820.2023.1963527

Chaudhry, M. A., & Kazim, E. (2022). Artificial Intelligence in Education (AIEd): A high-level academic and industry note 2021. AI and Ethics, 2(1), 157-165. https://doi.org/10.1007/s43681-021-00074-z DOI: https://doi.org/10.1007/s43681-021-00074-z

Chounta, I. A., Bardone, E., Raudsep, A., & Pedaste, M. (2022). Exploring teachers’ perceptions of artificial intelligence as a tool to support their practice in Estonian K-12 education. International Journal of Artificial Intelligence in Education, 32(3), 725-755. https://doi.org/10.1007/s40593-021-00243-5 DOI: https://doi.org/10.1007/s40593-021-00243-5

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.

de Baker, R. S. J., & Inventado, P. S. (2014). Chapter X: Educational data mining and learning analytics. Comput. Sci, 7, 1-16. DOI: https://doi.org/10.1007/978-1-4614-3305-7_4

Dede, C. (2014). The Role of Digital Technologies in Deeper Learning. Students at the Center: Deeper Learning Research Series. Jobs for the Future.

Double Robotics. (2017). Double Robotics: Homebound students connect to classrooms. Retrieved from https://www.doublerobotics.com

Drasgow, F., Levine, M. V., Tsien, S., Williams, B. A., & Mead, A. D. (1995). Fitting polytomous item response models to multiple-choice tests. Applied Psychological Measurement, 19, 145-165. https://doi.org/10.1177/014662169501900203 DOI: https://doi.org/10.1177/014662169501900203

Edwards, A., Edwards, C., Spence, P. R., Harris, C., & Gambino, A. (2016). Robots in the classroom: Differences in students’ perceptions of credibility and learning between “teacher as robot” and “robot as teacher”. Computers in Human Behavior, 65, 627-634. https://doi.org/10.1016/j.chb.2016.06.005 DOI: https://doi.org/10.1016/j.chb.2016.06.005

Hajeer, A. (2024). Teaching ESP in the digital age: Implications for crafting effective course descriptions for online learning. Journal of Teaching English for Specific and Academic Purposes, 255–267. https://doi.org/10.22190/JTESAP231116021H DOI: https://doi.org/10.22190/JTESAP231116021H

Hajeer, A., Toptsi, J., & Horváth-Csikós, G. (2023). Validating the intercultural sensitivity scale in the Hungarian university context. Cultural Management: Science and Education, 7(2), 79-95. https://doi.org/10.30819/cmse.7-2.05 DOI: https://doi.org/10.30819/cmse.7-2.05

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118 DOI: https://doi.org/10.1080/10705519909540118

Kim, J., Merrill, K., Xu, K., & Sellnow, D. D. (2020). My teacher is a machine: Understanding students’ perceptions of AI teaching assistants in online education. International Journal of Human–Computer Interaction, 36(20), 1902-1911. https://doi.org/10.1080/10447318.2020.1801227 DOI: https://doi.org/10.1080/10447318.2020.1801227

Li, J. (2015). The benefit of being physically present: A survey of experimental works comparing copresent robots, telepresent robots and virtual agents. International Journal of Human-Computer Studies, 77, 23-37. https://doi.org/10.1016/j.ijhcs.2015.01.001 DOI: https://doi.org/10.1016/j.ijhcs.2015.01.001

Mitra, P. P. (2021). Fitting elephants in modern machine learning by statistically consistent interpolation. Nature Machine Intelligence, 3(5), 378-386. DOI: https://doi.org/10.1038/s42256-021-00345-8

Nguyen, A., Kremantzis, M., Essien, A., Petrounias, I., & Hosseini, S. (2024). Enhancing student engagement through artificial intelligence: Understanding the basics, opportunities, and challenges. Journal of University Teaching and Learning Practice, 21(6). https://doi.org/10.53761/caraaq92 DOI: https://doi.org/10.53761/caraaq92

Park, S., & Whang, M. (2022). Empathy in human–robot interaction: Designing for social robots. International journal of environmental research and public health, 19(3), 1889. https://doi.org/10.3390/ijerph19031889 DOI: https://doi.org/10.3390/ijerph19031889

Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. MIT Press. DOI: https://doi.org/10.7551/mitpress/6979.001.0001

Woolf, B. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann. DOI: https://doi.org/10.1016/B978-0-12-373594-2.00006-X

Descargas

Publicado

30-09-2024

Cómo citar

Hajeer, A., Papp-Váry, Árpád, & Pólya, Éva. (2024). Tutores de IA frente a instructores humanos: Percepciones de los estudiantes de educación superior en Hungría y España. Edutec, Revista Electrónica De Tecnología Educativa, (89), 105–120. https://doi.org/10.21556/edutec.2024.89.3523

Número

Sección

Especial: Inteligencia artificial en la evaluación y la personalización...