Conceptual learning of Newton's laws through didactic sequences with augmented reality simulations

Authors

DOI:

https://doi.org/10.21556/edutec.2024.90.3295

Keywords:

Conceptual Learning, Didactic Sequences, Augmented Reality Simulations, Newton's Laws

Abstract

Redefinition of learning experiences through augmented reality technology requires a broad vision of the process, which in the case of science teaching allows linking the possibilities of visualizing phenomena difficult to observe or reproduce with activities that respond to specific didactic objectives. Thus, this article presents the details of a supported intervention with augmented reality simulations for teaching Newton's laws, within the framework of two proposed didactic sequences. Under a quasi-experimental scheme and a pre-test and post-test design, a questionnaire on the concept of force was used to assess conceptual learning. Results of the item difficulty index and the relative learning gain are shown, obtaining a favorable difference for the experimental group, particularly in equity in learning. Finally, notable some findings regarding the use of proposed didactic sequences are presented.

Downloads

Download data is not yet available.

Author Biographies

Francisco Aguilar Acevedo, Anahuac Puebla University (Mexico)

Master of Science in Mechatronic Engineering from the National Centre for Research and Technological Development, and Doctor of Science in Physics Education from the National Polytechnic Institute. His areas of interest include technologies for the teaching-learning of science, and the modelling and simulation of physical systems.

Jesús Alberto Flores Cruz, National Polytechnic Institute (Mexico)

Master and PhD in Systems Engineering from the Postgraduate Studies and Research Section of the ESIME-Zacatengo of the IPN. Dr. Flores is currently part of the academic staff of the Postgraduate Programme in Physics Education at CICATA-Legaria of the IPN.

Daniel Pacheco Bautista, University of the Isthmus (Mexico)

Professor of Science with Electronics from the National Institute of Astrophysics, Optics and Electronics, and PhD in Biomedical Engineering from the Universidad Popular Autónoma del Estado de Puebla. His current lines of work focus on Computer Architecture, Reconfigurable Computing, and Biomedical Engineering.

Efraín Dueñas Reyes, University of the Isthmus (Mexico)

Professor of Science in Power Electronics from the Centro Nacional de Investigación y Desarrollo Tecnológico, and PhD candidate in Energy from the Instituto de Energías Renovables (IER-UNAM). His areas of interest include power electronic converters applied to wind turbines and photovoltaic panels.

References

Aguilar, F., Flores, J. A., Hernández, C. A., y Pacheco, D. (2022). Diseño e implementación de un simulador basado en realidad aumentada móvil para la enseñanza de la física en la educación superior. Edutec. Revista Electrónica de Tecnología Educativa, (80), 66–83. https://doi.org/10.21556/edutec.2022.80.2509 DOI: https://doi.org/10.21556/edutec.2022.80.2509

Aguilar, F., Flores, J. A., y Pacheco, D. (2023). Enseñanza en línea de las leyes de Newton, utilizando simulaciones PhET. Innovación Educativa, 23(92), 112–127. https://www.ipn.mx/assets/files/innovacion/docs/Innovacion-Educativa-92/Ensenanza-en-linea-de-las-leyes-de-Newton-utilizando-simulaciones-PhET.pdf

AlGerafi, M. A. M., Zhou, Y., Oubibi, M., y Wijaya, T. T. (2023). Unlocking the Potential: A Comprehensive Evaluation of Augmented Reality and Virtual Reality in Education. Electronics, 12(18), Article 3953. https://doi.org/10.3390/electronics12183953 DOI: https://doi.org/10.3390/electronics12183953

Al-Ansi, A. M., Jaboob, M., Garad, A., y Al-Ansi, A. (2023). Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Social Sciences & Humanities Open, 8(1), Article 100532. https://doi.org/10.1016/j.ssaho.2023.100532 DOI: https://doi.org/10.1016/j.ssaho.2023.100532

Artamónova, I., Mosquera, J. C., y Mosquera, J. D. (2017). Aplicación de force concept inventory en América Latina para la evaluación de la comprensión de los conceptos básicos de mecánica a nivel universitario. Revista Educación en Ingeniería, 12(23), 56–63. https://doi.org/10.26507/rei.v12n23.729 DOI: https://doi.org/10.26507/rei.v12n23.729

Cao, W. y Yu, Z. (2023). The impact of augmented reality on student attitudes, motivation, and learning achievements—a meta-analysis (2016–2023). Humanities and Social Sciences Communications, 10, Article 352. https://doi.org/10.1057/s41599-023-01852-2 DOI: https://doi.org/10.1057/s41599-023-01852-2

Criollo-C, S., González-Rodríguez, M., Guerrero-Arias, A., Urquiza-Aguiar, L. F., y Luján-Mora, S. (2024). A Review of Emerging Technologies and Their Acceptance in Higher Education. Education Sciences, 14(1), Article 10. https://doi.org/10.3390/educsci14010010 DOI: https://doi.org/10.3390/educsci14010010

Dolenc, S., Susman, K., y Pavlin, J. (2024). Usage of Augmented Reality in Physics Education: Erasmus+ KA201 Project ARphymedes. Journal of Physics: Conference Series, 2727, Article 012026. https://doi.org/10.1088/1742-6596/2727/1/012026 DOI: https://doi.org/10.1088/1742-6596/2727/1/012026

Faria, A., y Miranda, G. L. (2024). Augmented Reality in Natural Sciences and Biology Teaching: Systematic Literature Review and Meta-Analysis. Emerging Science Journal, (4), 1666-1685. https://doi.org/10.28991/ESJ-2024-08-04-025 DOI: https://doi.org/10.28991/ESJ-2024-08-04-025

Garzón, J., Kinshuk, Baldiris, S., Gutiérrez J., y Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review, 31, Article 100334. https://doi.org/10.1016/j.edurev.2020.100334 DOI: https://doi.org/10.1016/j.edurev.2020.100334

Gómez‐Rios, M. D., Paredes‐Velasco, M., Hernández‐Beleño, R. D., y Fuentes‐Pinargote, J. A. (2023). Analysis of emotions in the use of augmented reality technologies in education: A systematic review. Computer Applications in Engineering Education, 31(1), 216–234. https://doi.org/10.1002/cae.22593 DOI: https://doi.org/10.1002/cae.22593

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809 DOI: https://doi.org/10.1119/1.18809

Hurtado, L. L. (2018). Relación entre los índices de dificultad y discriminación. Revista Digital de Investigación en Docencia Universitaria, 12(1), 273–300. https://doi.org/10.19083/ridu.12.614 DOI: https://doi.org/10.19083/ridu.12.614

Kalemkuş, J., y Kalemkuş, F. (2022). Effect of the use of augmented reality applications on academic achievement of student in science education: meta analysis review. Interactive Learning Environments, 31(9), 6017–6034, https://doi.org/10.1080/10494820.2022.2027458 DOI: https://doi.org/10.1080/10494820.2022.2027458

Kamińska, D., Zwoliński, G., Laska-Leśniewicz, A., Raposo, R., Vairinhos, M., Pereira, E., Urem, F., Hinić, M. L., Haamer, R. E., y Anbarjafari, G. (2023). Augmented Reality: Current and New Trends in Education. Electronics, 12(16), Article 3531. https://doi.org/10.3390/electronics12163531 DOI: https://doi.org/10.3390/electronics12163531

Koumpouros, Y. (2024) Revealing the true potential and prospects of augmented reality in education. Smart Learning Environments, 11, Article 2. https://doi.org/10.1186/s40561-023-00288-0 DOI: https://doi.org/10.1186/s40561-023-00288-0

Lampropoulos, G., Keramopoulos, E., Diamantaras, K., y Evangelidis, G. (2022). Augmented Reality and Gamification in Education: A Systematic Literature Review of Research, Applications, and Empirical Studies. Applied Sciences, 12(13), Article 6809. https://doi.org/10.3390/app12136809 DOI: https://doi.org/10.3390/app12136809

Mongan, S. W., Mondolang, A. H., y Poluakan, C. (2020). Misconception of weights, normal forces and Newton third law. Journal of Physics: Conference Series, 1572, Article 012046. https://doi.org/10.1088/1742-6596/1572/1/012046 DOI: https://doi.org/10.1088/1742-6596/1572/1/012046

Nikou, S. A. (2024). Factors influencing student teachers’ intention to use mobile augmented reality in primary science teaching. Education and Information Technologies. Advance online publication. https://doi.org/10.1007/s10639-024-12481-w DOI: https://doi.org/10.1007/s10639-024-12481-w

Novita, R. R. (2023). Physics E-book with Augmented Reality to Improve Students’ Interest in Physics. Jurnal Pendidikan Indonesia, 12(1), 145–154. https://doi.org/10.23887/jpiundiksha.v12i1.52764 DOI: https://doi.org/10.23887/jpiundiksha.v12i1.52764

Ortiz, G. M., Díaz, P. A., Llanos, O. R., Pérez, S. M., y González, K. (2015). Dificultad y discriminación de los ítems del examen de Metodología de la Investigación y Estadística. Revista Educación Médica del Centro, 7(2), 19–35. http://www.revedumecentro.sld.cu/index.php/edumc/article/view/474

Permana, T. I., Husamah, H., Nurhamdani, M. I., Zaskia, A., Savitri, A., y Salsabila, D. A. (2024). Augmented reality in biology education: A systematic literature review. Research and Development in Education, 4(1), 630-652. https://doi.org/10.22219/raden.v4i1.32636 DOI: https://doi.org/10.22219/raden.v4i1.32636

Radu, I. y Schneider, B. (2023). How Augmented Reality (AR) Can Help and Hinder Collaborative Learning: A Study of AR in Electromagnetism Education. IEEE Transactions on Visualization and Computer Graphics, 29(9), 3734–3745. https://doi.org/10.1109/TVCG.2022.3169980 DOI: https://doi.org/10.1109/TVCG.2022.3169980

Serhane, A., Debiache, M., Boudhar, K., y Zeghdaoui, A. (2023). Difficulties Facing Students in Transition to Newtonian Viewpoint: Newton’s Third Law Case. Science Journal of Education, 11(1), 43-50. https://doi.org/10.11648/j.sjedu.20231101.17 DOI: https://doi.org/10.11648/j.sjedu.20231101.17

Serway, R. A., y Jewett, J. W. (2018). Física para Ciencias e Ingeniería 1 (10ma ed.). Cengage Learning.

Vidak, A., Šapić, I. M., Mešić, V., y Gomzi, V. (2024). Augmented reality technology in teaching about physics: a systematic review of opportunities and challenges. European Journal of Physics, 45(2), Article 023002. https://doi.org/10.1088/1361-6404/ad0e84 DOI: https://doi.org/10.1088/1361-6404/ad0e84

Young, H. D., y Freedman, R. A. (2018). Física Universitaria con Física Moderna 1. Pearson Educación.

Wilson, J., Buffa, A. J., y Lou, B. (2007). Física (6ta ed.). Pearson Educación.

Zamahsari, G. K., Amalia, M. N., Rifah, L., Permana, F., Romadhon, S., y Prihatini, A. (2024, January). A Systematic Review in Educational Settings: Numerous Challenges to the Adoption of Augmented Reality. Proceedings of the 18th International Conference on Ubiquitous Information Management and Communication. Kuala Lumpur, Malaysia: IEEE. https://doi.org/10.1109/IMCOM60618.2024.10418449 DOI: https://doi.org/10.1109/IMCOM60618.2024.10418449

Published

17-12-2024

How to Cite

Aguilar Acevedo, F., Flores Cruz, J. A., Pacheco Bautista, D., & Dueñas Reyes, E. (2024). Conceptual learning of Newton’s laws through didactic sequences with augmented reality simulations. Edutec, Revista Electrónica De Tecnología Educativa, (90), 19–33. https://doi.org/10.21556/edutec.2024.90.3295

Most read articles by the same author(s)