Selección de atributos predictivos del rendimiento académico de estudiantes en un modelo de b-learning
DOI:
https://doi.org/10.21556/edutec.2011.37.390Keywords:
Aprendizaje a distancia, Aprendizaje mixto, Innovación educativa, Selección de rasgos, Entornos sociales de aprendizaje, Minería de datosAbstract
La participación de estudiantes en iniciativas de b-learning genera una gran cantidad de datos e indicadores que no siempre son adecuadamente analizados por los docentes. Las plataformas de formación virtual permiten gestionar de manera óptima dichos indicadores. En este trabajo se aplican técnicas de minería de datos para identificar aquellos indicadores que puedan tener mayor valor predictivo, a la hora de medir el rendimiento de los estudiantes, en el contexto de una asignatura de grado que combina actividades docentes presenciales con actividades soportadas en aplicaciones de teleformación.
Predictive feature selection of academic efficiency in a b-learning model
Abstract
Student participation in b-learning initiatives generates a large amount of data and indicators that are not always properly used by teachers. Virtual learning platforms enable an optimal management of these indicators. In this paper we apply data mining techniques to identify indicators that may be used in assessing student performance in the context of a b-learning course that combines classroom teaching activities with virtual activities.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
By submitting the paper, the authors assign the publication rights to the journal Edutec. For its part, Edutec authorises its distribution as long as its content is not altered and its origin is indicated. At the end of each article published in Edutec, the citation procedure is indicated.
The management and editorial board of Edutec Revista Electrónica de Tecnología Educativa do not accept any responsibility for the statements and ideas expressed by the authors in their work.
Translated with www.DeepL.com/Translator (free version)