Diseño e implementación de un simulador basado en realidad aumentada móvil para la enseñanza de la física en la educación superior

Autores/as

DOI:

https://doi.org/10.21556/edutec.2022.80.2509

Palabras clave:

Simulador, Realidad Aumentada Móvil, Enseñanza de la Física, Ingeniería de Software

Resumen

Los beneficios atribuidos a la realidad aumentada (RA) en la enseñanza de diferentes campos del conocimiento, han propiciado la intersección de modalidades y métodos de enseñanza aprendizaje que buscar potencializar las fortalezas de dicha tecnología aplicada en la educación. Uno de estos enfoques, entrelaza a la realidad aumentada con el aprendizaje móvil y con el aprendizaje basado en las simulaciones. No obstante, el cómo desarrollar estas aplicaciones a fin que permitan proporcional una experiencia de aprendizaje, es una línea que continúa construyéndose. En este artículo se presentan las fases de desarrollo de un simulador en realidad aumentada móvil, cuya formulación parte de la experiencia de un grupo de estudiantes al usar un simulador web. Además, se presentan los resultados de la evaluación de la calidad de los objetos de realidad aumentada, obteniendo una valoración positiva en los aspectos técnicos, de utilización y guía, lo que sugiere una integración adecuada de tecnología de realidad aumentada con los aspectos pedagógicos considerados en el diseño de la aplicación.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Francisco Aguilar Acevedo, Universidad del Istmo (México)

Ingeniero en Electrónica por la Universidad Tecnológica de la Mixteca y Maestro en Ciencias en Ingeniería Mecatrónica por el Centro Nacional de Investigación y Desarrollo Tecnológico. Sus áreas de interés incluyen la física educativa, la realidad virtual y aumentada, y la robótica.

Jesus Alberto Flores Cruz, Instituto Politécnico Nacional (México)

Maestro y Doctor en Ingeniería de Sistemas por la Sección de Estudios de Posgrado e Investigación de la ESIME-Zacatengo del IPN. El Dr. Flores actualmente forma parte del claustro académico del Posgrado en Física Educativa en el CICATA-Legaria del IPN.

Cesar Adrián Hernández Aguilar, Universidad del Istmo (México)

Ingeniero Químico y Maestro en Ciencias en Ingeniería Química por el Instituto Tecnológico de Orizaba. Su actual línea de investigación son las aplicaciones de ultrasonido para sistemas reaccionantes.

Daniel Pacheco Bautista, Universidad del Istmo (México)

Ingeniero en Electrónica por el Instituto Tecnológico de Oaxaca, Maestro en Ciencias con Electrónica por el Instituto Nacional de Astrofísica, Óptica y Electrónica, y Doctor en Ingeniería Biomédica por la Universidad Popular Autónoma del Estado de Puebla. Sus actuales líneas de trabajo se centran en la Arquitectura de Computadoras, el Cómputo Reconfigurable, y la Ingeniería Biomédica.

Citas

Afandi, B., Kustiawan, I., & Herman, N. D. (2019). Exploration of the augmented reality model in learning. Journal of Physics: Conference Series, 1375, 1-8 (012082). https://doi.org/10.1088/1742-6596/1375/1/012082

Abu-Bakar, J.A., Gopalan, V., Zulkifli, A.N., & Alwi, A. (2018). Design and Development of Mobile Augmented Reality for Physics Experiment. In N. Abdullah, W. Wan-Adnan, & M. Foth (Eds.). User Science and Engineering. i-USEr 2018. Communications in Computer and Information Science (Vol. 886, pp. 47-58). Singapore: Springer. https://doi.org/10.1007/978-981-13-1628-9_5

Cabero, J., & Barroso, J. (2016). The educational possibilities of Augmented Reality. New Approaches in Educational Research, 5(1), 44-50. https://doi.org/10.7821/naer.2016.1.140

Cabero-Almenara, J., & Pérez, J. L. (2018). Validación del modelo TAM de adopción de la Realidad Aumentada mediante ecuaciones estructurales. Estudios sobre Educación, 34, 129-153. https://doi.org/10.15581/004.34.129-153

Cai, S., Wang, X., & Chiang, F.-K. (2014). A case study of Augmented Reality simulation system application in a chemistry course. Computers in Human Behavior, 37, 31-40. https://doi.org/10.1016/j.chb.2014.04.018

Cantón, D., Arellano, J.J., Hernández, M. Á., & Nieva, O.S. (2017). Uso didáctico de la realidad virtual inmersiva con interacción natural de usuario enfocada a la inspección de aerogeneradores. Apertura, 9(2), 8-23. http://dx.doi.org/10.32870/Ap.v9n2.1049

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). N.Y.: Routledge. https://doi.org/10.4324/9780203771587

Billinghurst, M., & Dünser, A. (2012). Augmented Reality in the Classroom. Computer, 45(7), 56-63. https://doi.org/10.1109/MC.2012.111

Boyles, B. (2017). Virtual reality and augmented reality in education. Retrieved from https://www.usma.edu/cfe/Literature/Boyles_17.pdf

Dalgarno, B., & Lee, M.J.W. (2010). What are the learning affordances of 3-D virtual envi-ronments?. British Journal of Educational Technology, 41(1), 10-32. https://doi.org/10.1111/j.1467-8535.2009.01038.x

Ding, L., & Caballero, M. D. (2014). Uncovering the hidden meaning of cross-curriculum comparison results on the Force Concept Inventory. Physical Review Special Topics - Physics Education Research, 10(2), 1-12 (020125). https://doi.org/10.1103/PhysRevSTPER.10.020125

Faridi, H., Tuli, N., Mantri, A., Singh, G., & Gargrish, S. (2021). A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in Physics. Computer Applications in Engineering Education, 29(1), 258–273. https://doi.org/10.1002/cae.22342

Fazio, C., & Battaglia, R. (2019). Conceptual Understanding of Newtonian Mechanics Through Cluster Analysis of FCI Student Answers. International Journal of Science and Mathematics Education, 17, 1497-517. https://doi.org/10.1007/s10763-018-09944-1

Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 1-19 (103635). https://doi.org/10.1016/j.compedu.2019.103635

Flores, J. A., Camarena, P., & Avalos, E. (2014). La Realidad Virtual una Tecnología Innovadora Aplicable al Proceso de Enseñanza de los Estudiantes de Ingeniería. Apertura, 6(2), 86-99.

Garzón, J. (2021). An Overview of Twenty-Five Years of Augmented Reality in Education. Multimodal Technologies and Interaction, 5(7), 37. https://doi.org/10.3390/mti507003

Handhika, J., Cari, C., Soeparmi, A., & Sunarno, W. (2016). Student conception and perception of Newton's law. AIP Conference Proceedings, 1708(1), 1-5 (070005). https://doi.org/10.1063/1.4941178

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141-158. https://doi.org/10.1119/1.2343497

Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and Learning about Force with a Representational Focus: Pedagogy and Teacher Change. Research in Science Education, 40, 5-28. https://doi.org/10.1007/s11165-009-9154-9

Ibáñez, M.B., De Castro, A.J., & Delgado-Kloos, C.D. (2017). An empirical study of the use of an augmented reality simulator in a face-to-face Physics course. Proceedings of 17th International Conference on Advanced Learning Technologies (pp. 469-471). Timisoara, Romania: IEEE. https://doi.org/10.1109/ICALT.2017.105

Ibáñez, M.B., Di Serio, Á., Villarán, D., & Kloos, C.D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13. https://doi.org/10.1016/j.compedu.2013.09.004

Kapp, S., Thees, M., Beil, F., Weatherby, T., Burde, J., Wilhelm, T., & Kuhn, J. (2020). The Effects of Augmented Reality: A Comparative Study in an Undergraduate Physics Laboratory Course. Proceedings of the 12th International Conference on Computer Supported Education (Vol. 2, pp. 197-206). https://doi.org/10.5220/0009793001970206

Kendall, K. E., & Kendall, J. E. (2011). Análisis y diseño de sistemas (8va ed.). México: Pearson Educación.

Kind, P.M., Angell, C., & Guttersrud, Ø. (2017). Teaching and Learning Representations in Upper Secondary Physics. In D. Treagust, R. Duit, & H. Fischer (Eds.). Multiple Representations in Physics Education. Models and Modeling in Science Education (Vol. 10, pp. 25-45). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-58914-5_2

Laurens-Arredondo, L. (2022). Mobile augmented reality adapted to the ARCS model of motivation: a case study during the COVID-19 pandemic. Education and Information Technologies. https://doi.org/10.1007/s10639-022-10933-9

Liono, R.A., Amanda, N., Pratiwi, A., & Gunawan, A.A.S., (2021). A Systematic Literature Review: Learning with Visual by The Help of Augmented Reality Helps Students Learn Better. Procedia Computer Science, 179, 144-152. https://doi.org/10.1016/j.procs.2020.12.019

Martín-Gutiérrez, J., Mora, C.E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual Technologies Trends in Education. EURASIA Journal of Mathematics Science and Technology Education, 13(2), 469-486. https://doi.org/10.12973/eurasia.2017.00626a

Mora, C. & Benítez, Y. (2007). Errores conceptuales sobre fuerza y su impacto en la enseñanza. Revista Cubana de Física, 24(1), 41-45.

Morales, A.D., Sanchez, S.A., Pineda, C.M., & Romero, H.J. (2019). Use of Augmented Reality for the Simulation of Basic Mechanical Physics Phenomena. IOP Conference Series: Materials Science and Engineering, 519, 1-9 (012021). https://doi.org/10.1088/1757-899X/519/1/012021

Mystakidis, S., Christopoulos, A., & Pellas, N. (2021). A systematic mapping review of augmented reality applications to support STEM learning in higher education. Education and Information Technologies. https://doi.org/10.1007/s10639-021-10682-1

Opfermann M., Schmeck A., & Fischer H.E. (2017). Multiple Representations in Physics and Science Education - Why Should We Use Them?. In D. Treagust, R. Duit, & H. Fischer (Eds.). Multiple Representations in Physics Education. Models and Modeling in Science Education (Vol. 10, pp. 1-22). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-58914-5_1

Özdemir, M. (2017). Educational Augmented Reality (AR) Applications and Development Process. In G. Kurubacak & H. Altinpulluk (Eds.). Mobile Technologies and Augmented Reality in Open Education (pp. 26-53). Pennsylvania: IGI Global. https://doi.org/10.4018/978-1-5225-2110-5.ch002

Pressman, R. S. (2010). Ingeniería de software. Un enfoque práctico (7ma ed.). México: McGraw-Hill Educación.

Ropawandi, D., Halim, L., & Husnin, H. (2022). Augmented Reality (AR) Technology-Based Learning: The Effect on Physics Learning during the COVID-19 Pandemic. International Journal of Information and Education Technology, 12(2), 132-140. https://doi.org/10.18178/ijiet.2022.12.2.1596

Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education, 2, 53-55. https://doi.org/10.5116/ijme.4dfb.8dfd

Umrotul, U., Astria, A, Kusairi, S., & Adi, N. (2022). The ability to solve physics problems in symbolic and numeric representations. Revista Mexicana de Física E., 19(1), 1-7 (010209). https://doi.org/10.31349/RevMexFisE.19.010209

Villalustre, L., Del Moral, M., Neira, M., & Herrero, M. (2017). Proyecto ACRA: experiencias didácticas en ciencias con realidad aumentada en los niveles pre-universitarios. EDUTEC, (62), 1-18 (a369). https://doi.org/10.21556/edutec.2017.62.1009

Yilmaz, O. (2021). Augmented Reality in Science Education: An Application in Higher Education. Shanlax International Journal of Education, 9(3), 136-148. https://doi.org/10.34293/education.v9i3.3907

Descargas

Publicado

28-06-2022

Cómo citar

Aguilar Acevedo, F., Flores Cruz, J. A., Hernández Aguilar, . C. A., & Pacheco Bautista, D. (2022). Diseño e implementación de un simulador basado en realidad aumentada móvil para la enseñanza de la física en la educación superior. Edutec, Revista Electrónica De Tecnología Educativa, (80). https://doi.org/10.21556/edutec.2022.80.2509

Número

Sección

Sección general