Español

Authors

DOI:

https://doi.org/10.21556/edutec.2024.90.3393

Keywords:

Active Methodologies, Educational Technology, Project-Based Learning, Design Thinking, STEM Education

Abstract

In an era of rapid technological and scientific advancement, training educators in STEM (Science, Technology, Engineering, and Mathematics) education equips them to prepare students for future job markets. This article presents the initial phase of the study "Learning Environments for Disciplinary Integration with STEM and Digital Technologies," which involved designing and implementing a training methodology to integrate STEM education into educational institutions, guided by the principles of design-based research. The developed method is founded on Design Thinking, active learning methodologies, and integrating educational technologies to address complex problems. Data suggest that the implemented method increased student motivation; educators reported feeling supported and equipped with effective pedagogical and technological tools. However, challenges in teacher training must be considered, calling for various strategies to ensure continuous professional development, specific mechanisms for curricular integration, and strategies to foster collaborative work among educators. The methodology proved replicability, indicating its potential to be adapted, transferred to different educational contexts, and implemented on a larger scale.

Funding

Aulas Amigas

Downloads

Download data is not yet available.

Author Biographies

Ferney Orlando Amaya-Fernández, Pontificia Bolivariana University (Colombia)

Ferney Orlando Amaya-Fernández, Electronic Engineer, Master in Engineering, and Doctor in Telecommunications. He is a Research Professor at the School of Engineering of Universidad Pontificia Bolivariana, Colombia, and a member of the GIDATIC Research Group. His current research interests include STEM education and the use and impact of Artificial Intelligence in education.

Olga Lucia Agudelo Velásquez, University of the Balearic Islands (Spain)

Olga Lucía Agudelo Velásquez is a primary education teacher, holds a PhD in Educational Technology, Virtual Education, and Knowledge Management, and has master's degrees in e-learning management and production, as well as in educational technology. She is a researcher at the University of the Balearic Islands (Spain) and a professor-researcher at Andrés Bello University (Chile). With over 35 years of experience in the field of pedagogy and 30 years in teacher training, she is an active member of academic and educational research networks such as EDUTEC and RILPE.

Lina Maria Cano Vasquez, Pontificia Bolivariana University (Colombia)

Lina Maria Cano Vasquez is Doctor of Education. Full-time Professor at the Pontifical Bolivariana University (Medellín, Colombia). Researcher at the Education, Languages, and Learning Environments Research Group (EDULLAP) of the School of Education and Pedagogy. In recent years, she has dedicated herself to research and undergraduate and graduate training programs related to learning, the use and appropriation of Information Technologies, the STEM educational approach, and learning processes. She has also coordinated transfer and extension projects (local, national, and international).

Isabel Cristina Angel Uribe, Pontificia Bolivariana University (Colombia)

Isabel Cristina Angel-Uribe, Industrial Designer, Master in Information and Communication Technologies in Education, PhD in Education. Research Professor at the School of Education and Pedagogy of the Universidad Pontificia Bolivariana, Colombia; and member of the Education, Languages and Learning Environments Research Group. Her current topics of interest include STEM education, use and appropriation of ICT, teacher training and practices, MOOC, among others.

References

Acosta, C. (2023). Carreras universitarias relacionadas con las TIC son una demanda creciente en el país. La República. https://www.larepublica.co/.

Arifin, N. R., & Mahmud, S. N. D. (2021). A systematic literature review of design thinking application in STEM integration. Creative Education, 12(7), 1558-1571. DOI: https://doi.org/10.4236/ce.2021.127118

Benites, E. A., & Barzallo, S. A. (2019). STEAM como enfoque interdisciplinario e inclusivo para desarrollar las potencialidades y competencias actuales. Identidad Bolivariana, 1-12. DOI: https://doi.org/10.37611/IB0ol01-12

Cabrera, Agustina & Cabobianco, Marcos & Leon, Cristo. (2023). Desafíos y Oportunidades en la Alfabetización STEM: Una Mirada desde la Perspectiva de los Jóvenes en América Latina [Artículo en conferencia]. 226-232. https://doi.org/10.54808/CISCI2023.01.226. DOI: https://doi.org/10.54808/CISCI2023.01.226

Cardetti, Fabiana & Orgnero, M. 2013). Improving Teaching Practice Through Interdisciplinary Dialog. Studying Teacher Education: a journal of self-study of teacher education practices. https://doi.org/10.1080/17425964.2013.831756. DOI: https://doi.org/10.1080/17425964.2013.831756

Castañeda, L., Salinas, J. y Adell, J. (2020). Hacia una visión contemporánea de la Tecnología Educativa. Digital Education Review, 37, 240-268. https://doi.org/10.1344/der.2020.37.240-268. DOI: https://doi.org/10.1344/der.2020.37.240-268

Castro Rodríguez, E., & Montoro Medina, A. B. (2021). Educación STEM y formación del profesorado de Primaria en España. Revista de educación.

de Benito Crosetti, B., & Salinas Ibáñez, J. M. (2016). La Investigación Basada en Diseño en Tecnología Educativa. RiiTE Revista Interuniversitaria de Investigación en Tecnología Educativa. https://doi.org/10.6018/riite2016/260631. DOI: https://doi.org/10.6018/riite2016/260631

De Sola, V. (2011). Propuesta de un plan de evaluación dentro de los parámetros de evaluación multidireccional y por competencias, para evaluar materias de laboratorio en carreras universitarias (Doctoral dissertation, Universidad Monteávila).

Díaz, A. (2023, Septiembre). Necesitamos a más jóvenes en STEM. Forbes Centroamérica. https://forbescentroamerica.com/.

Domènech-Casal, J. (2018). Aprendizaje Basado en Proyectos en el marco STEM: componentes didácticas para la Competencia Científica. Ápice. Revista de Educación Científica, 21(2), 29-42. DOI: https://doi.org/10.17979/arec.2018.2.2.4524

Duarte D., Jakeline. (2003). Ambientes de Aprendizaje: Una Aproximación Conceptual. Estudios pedagógicos (Valdivia), (29), 97-113. https://dx.doi.org/10.4067/S0718-07052003000100007. DOI: https://doi.org/10.4067/S0718-07052003000100007

Fan, S. C., Yu, K. C., & Lin, K. Y. (2020). A framework for implementing an engineering-focused STEM curriculum. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-020-10129-y. DOI: https://doi.org/10.1007/s10763-020-10129-y

Fuertes Camacho, M. T., & Fernández Morilla, M. (2023). STEM education in childhood: perceptions of teachers. TECHNO Review: International Technology, Science and Society. DOI: https://doi.org/10.37819/revtechno.1882

Hernández, J. G., & Neira, R. H. (2022). Brecha en la vocación de los estudiantes por profesiones STEM y el mercado laboral europeo. IE Comunicaciones: Revista Iberoamericana de Informática Educativa, (35), 22-32.

Lopera, J. M. (2022). Inspiración e innovación: caso Aulas AMiGAS y TOMi.digital. https://www.eafit.edu.co/escuelas/administracion/emprendimiento-academico/bitacora-de-innovacion/casos-catedra-de-innovacion/Documents/Aulas_Amigas_catedra.pdf.

Macancela-Coronel, G. F., García-Herrera, D. G.,Erazo-Álvarez, C. A. y Erazo-Álvarez, J. C.(2020). Comprensión del aprendizaje interdisciplinar desde la educación STEM. EPISTEME KOINONIA,3(1), 117 39. https://fundacionkoinonia.com.ve/ojs/index.php/epistemekoinonia/article/download/995/1784. DOI: https://doi.org/10.35381/e.k.v3i1.995

Martínez, R. C. J., Zúñiga, C. P. C., Velázquez, M. R., & Llerena, E. M. V. (2023). Fortaleciendo la empleabilidad: Upskilling y Reskilling como clave para un futuro laboral en perpetua transformación. Dilemas contemporáneos: Educación, Política y Valores.

Masaquiza, R. R. C., Arce, K. L. R., Pozo, D. I. L., & Gualoto, O. I. P. (2024). Desarrollo de habilidades del siglo XXI a través de la educación STEM. Revista Imaginario Social, 7(2). DOI: https://doi.org/10.59155/is.v7i2.191

Ramos-Lizcano, C., Ángel-Uribe, I. C., López-Molina, G., & Cano-Ruiz, Y. M. (2022). Elementos centrales de experiencias educativas con enfoque STEM. Revista Científica, 45(3), 345-357. https://doi.org/10.14483/23448350.192981. DOI: https://doi.org/10.14483/23448350.19298

Sánchez, M.M. (2023). Los desafíos de la Tecnología Educativa. RiiTE Revista Interuniversitaria de Investigación en Tecnología Educativa, 14, 1-5. https://doi.org/10.6018/riite.572131. DOI: https://doi.org/10.6018/riite.572131

Sarican, G., & Akgunduz, D. (2018). The Impact of Integrated STEM Education on Academic Achievement, Reflective Thinking Skills towards Problem Solving and Permanence in Learning in Science Education. Cypriot Journal of Educational Sciences, 13(1), 94-107. DOI: https://doi.org/10.18844/cjes.v13i1.3352

Struyf, A., De Loof, H., Boeve-de Pauw, J., & Van Petegem, P. (2019). Students' engagement in different STEM learning environments: Integrated STEM education as promising practice?. International Journal of Science Education, 41(10), 1387-1407. DOI: https://doi.org/10.1080/09500693.2019.1607983

Sampieri, R. H. (2006). Ampliación y fundamentación de los métodos mixtos. Recuperado de: https://www.sandrameza.net/metodologiapdf/12.pdf.

Wu-Rorrer, R. (2017). Filling the gap: Integrating STEM into career and technical education middle school programs: There is no single strategy for approaching STEM integration. Technology and Engineering Teacher, 77 (2), 8.

Published

17-12-2024

How to Cite

Amaya-Fernández, F. O., Agudelo Velásquez, O. L., Cano Vasquez, L. M., & Angel Uribe, I. C. (2024). Español. Edutec, Revista Electrónica De Tecnología Educativa, (90), 34–53. https://doi.org/10.21556/edutec.2024.90.3393