Efectividad de las tecnologías inmersivas para potenciar el aprendizaje en educación superior: una revisión sistemática
DOI:
https://doi.org/10.21556/edutec.2024.90.3391Palabras clave:
Tecnología educativa, aprendizaje, simulación, enseñanza superior, universidadResumen
Las tecnologías digitales han revolucionado la educación, ofreciendo oportunidades para crear entornos de aprendizaje enriquecidos que se asemejan cada vez más a la realidad. Por ello, es fundamental comprender cómo estas tecnologías pueden mejorar el proceso de enseñanza-aprendizaje. Esta revisión se ha realizado para reconocer la evidencia científica sobre la efectividad de las tecnologías inmersivas en el ámbito de la educación superior. Siguiendo la Declaración PRISMA-P se seleccionaron 27 estudios relevantes que cumplían con los criterios de inclusión establecidos. Los resultados revelaron que los estudios analizados consistían principalmente en investigaciones cuasiexperimentales, experimentales o estudios de caso, realizados en universidades internacionales y principalmente con estudiantes de áreas científico-técnicas. Con relación a la efectividad pedagógica, se encontró que el grado de inmersión en las experiencias educativas, la práctica recurrente y la implementación de actividades didácticas antes y después del uso de las tecnologías inmersivas eran factores determinantes para lograr resultados efectivos. Estos hallazgos respaldan la importancia de diseñar experiencias de aprendizaje inmersivas que involucren activamente a los estudiantes, brindándoles la oportunidad de practicar y aplicar los conocimientos adquiridos. En conclusión, esta revisión sistemática proporciona evidencia científica sólida sobre la efectividad de las tecnologías inmersivas en la Educación Superior.
Descargas
Citas
Agbo, F. J., Olaleye, S. A., Bower, M., & Oyelere, S. S. (2023). Examining the relationships between students' perceptions of technology, pedagogy, and cognition: The case of immersive virtual reality mini games to foster computational thinking in higher education. Smart Learning Environments, 10(1) https://doi.org/10.1186/s40561-023-00233-1 DOI: https://doi.org/10.1186/s40561-023-00233-1
Bennie, S. J., Ranaghan, K. E., Deeks, H., Goldsmith, H. E., O'Connor, M. B., Mulholland, A. J., & Glowacki, D. R. (2019). Teaching enzyme catalysis using interactive molecular dynamics in virtual reality. Journal of Chemical Education, 96(11), 2488-2496. https://doi.org/10.1021/acs.jchemed.9b00181 DOI: https://doi.org/10.1021/acs.jchemed.9b00181
Birbara, N. S., & Pather, N. (2021). Real or not real: The impact of the physical fidelity of virtual learning resources on learning anatomy. Anatomical Sciences Education, 14(6), 774-787. https://doi.org/10.1002/ase.2022 DOI: https://doi.org/10.1002/ase.2022
Brown, M., McCormack, M., Reeves, J., Brooks, D.C., Grajek, S., Alexander, B., Bali, M., Bulger, S., Dark, S., Engelbert, N., Gannon, K., Gauthier, A., Gibson, D., Gibson, R., Lundin, B., Veletsianos, G., & Weber, N. (2020). EDUCAUSE Horizon Report. Teaching and Learning Edition.
Cabero Almenara, J., Valencia-Ortiz, R. y Llorente-Cejudo, C. (2022). Ecosistema de tecnologías emergentes: realidad aumentada, virtual y mixta. Tecnología, Ciencia y Educación, 23, 7-22. https://doi.org/10.51302/tce.2022.1148 DOI: https://doi.org/10.51302/tce.2022.1148
Chan, V., Larson, N.D., Moody, D.A., Moyer, D.G., & Shah, N.D. (2021) Impact of 360° vs 2D Videos on Engagement in Anatomy Education. Cureus 13(4): e14260. https://doi.org/10.7759/cureus.14260 DOI: https://doi.org/10.7759/cureus.14260
Chan, CS., Bogdanovic, J. & Kalivarapu, V. (2022).Applying immersive virtual reality for remote teaching architectural history. Educ Inf Technol 27, 4365–4397. https://doi.org/10.1007/s10639-021-10786-8 DOI: https://doi.org/10.1007/s10639-021-10786-8
Cózar Gutiérrez, R., González-Calero Somoza, J., Villena Taranilla, R., y Merino Armero, J. (2019). Análisis de la motivación ante el uso de la realidad virtual en la enseñanza de la historia en futuros maestros. Edutec. Revista Electrónica de Tecnología Educativa, (68), 1-14. https://doi.org/10.21556/edutec.2019.68.1315 DOI: https://doi.org/10.21556/edutec.2019.68.1315
Delello, J. A. (2014). Insights from pre-service teachers using science-based augmented reality. Journal of Computers in Education, 1(4), 295–311. https://doi.org/https://doi.org/10.1007/s40692-014-0021-y DOI: https://doi.org/10.1007/s40692-014-0021-y
Detyna, M., & Kadiri, M. (2020). Virtual reality in the HE classroom: feasibility, and the potential to embed in the curriculum. Journal of Geography in Higher Education, 44(3), 474–485. https://doi.org/10.1080/03098265.2019.1700486 DOI: https://doi.org/10.1080/03098265.2019.1700486
Elme, L., Jørgensen, M. L. M., Dandanell, G., Mottelson, A., & Makransky, G. (2022). Immersive Virtual Reality in STEM: Is IVR an Effective Learning Medium and Does Adding Self-Explanation after a Lesson Improve Learning Outcomes? Educational Technology Research and Development, 70(5), 1601–1626. https://doi.org/10.1007/s11423-022-10139-3 DOI: https://doi.org/10.1007/s11423-022-10139-3
Filter, E., Eckes, A., Fiebelkorn, F., & Büssing, A. G. (2020). Virtual reality nature experiences involving wolves on youtube: Presence, emotions, and attitudes in immersive and nonimmersive settings. Sustainability (Switzerland), 12(9) https://doi.org/10.3390/su12093823 DOI: https://doi.org/10.3390/su12093823
Hajirasouli, A., Banihashemi, S., Sanders, P., & Rahimian, F. (2023). BIM-enabled virtual reality (VR)-based pedagogical framework in architectural design studios. Smart and Sustainable Built Environment, https://doi.org/10.1108/SASBE-07-2022-0149 DOI: https://doi.org/10.1108/SASBE-07-2022-0149
Ho L-H, Sun H, Tsai T-H. (2019) Research on 3D Painting in Virtual Reality to Improve Students' Motivation of 3D Animation Learning. Sustainability, 11(6):1605. https://doi.org/10.3390/su11061605 DOI: https://doi.org/10.3390/su11061605
Huang, W., Roscoe, R. D., Johnson-Glenberg, M. C., & Craig, S. D. (2021). Motivation, Engagement, and Performance across Multiple Virtual Reality Sessions and Levels of Immersion. Journal of Computer Assisted Learning, 37(3), 745–758. https://doi.org/10.1111/jcal.12520 DOI: https://doi.org/10.1111/jcal.12520
Hutson, J., & Olsen, T. (2022). Virtual reality and art history: A case study of digital humanities and immersive learning environments. Journal of Higher Education Theory and Practice, 22(2), 50-65. https://doi.org/10.33423/jhetp.v22i2.5036 DOI: https://doi.org/10.33423/jhetp.v22i2.5036
Kaur, D. P., Kumar, A., Dutta, R., & Malhotra, S. (2022). The role of interactive and immersive technologies in higher education: A survey. Journal of Engineering Education Transformations, 36(2), 79-86. https://doi.org/10.16920/jeet/2022/v36i2/22156 DOI: https://doi.org/10.16920/jeet/2022/v36i2/22156
Klingenberg, S., Jørgensen, M. L. M., Dandanell, G., Skriver, K., Mottelson, A., & Makransky, G. (2020). Investigating the Effect of Teaching as a Generative Learning Strategy When Learning through Desktop and Immersive VR: A Media and Methods Experiment. British Journal of Educational Technology, 51(6), 2115–2138. https://doi.org/10.1111/bjet.13029 DOI: https://doi.org/10.1111/bjet.13029
Klippel, A., Zhao, J., Oprean, D., Wallgrün, J. O., Stubbs, C., La Femina, P., & Jackson, K. L. (2020). The value of being there: Toward a science of immersive virtual field trips. Virtual Reality, 24(4), 753-770. https://doi.org/10.1007/s10055-019-00418-5 DOI: https://doi.org/10.1007/s10055-019-00418-5
Lannutti, E. D. (2022). Robótica: De la ciencia ficción a la realidad científica (Vol. 13). EDIUNC.
Lilia, A., & Aspera, G. (2011). La realidad virtual inmersiva en ambientes de aprendizaje. Un caso en la educación superior. Revista ICONO 14, 2, 122–137. DOI: https://doi.org/10.7195/ri14.v9i2.42
Liu R, Xu X, Yang H, Li Z and Huang G (2022) Impacts of Cues on Learning and Attention in Immersive 360-Degree Video: An Eye-Tracking Study. Front. Psychol. 12:792069. https://doi.org/10.3389/fpsyg.2021.792069 DOI: https://doi.org/10.3389/fpsyg.2021.792069
Lui, M., McEwen, R., & Mullally, M. (2020). Immersive Virtual Reality for Supporting Complex Scientific Knowledge: Augmenting Our Understanding with Physiological Monitoring. British Journal of Educational Technology, 51(6), 2180–2198. https://doi.org/10.1111/bjet.13022 DOI: https://doi.org/10.1111/bjet.13022
Macnamara, A. F., Bird, K., Rigby, A., Sathyapalan, T., & Hepburn, D. (2021). High-fidelity simulation and virtual reality: An evaluation of medical students' experiences. BMJ Simulation and Technology Enhanced Learning, 7(6), 528-535. https://doi.org/10.1136/bmjstel-2020-000625 DOI: https://doi.org/10.1136/bmjstel-2020-000625
Makransky, G., & Lilleholt, L. (2018). A Structural Equation Modeling Investigation of the Emotional Value of Immersive Virtual Reality in Education. Educational Technology Research and Development, 66(5), 1141–1164. https://doi.org/10.1007/s11423-018-9581-2 DOI: https://doi.org/10.1007/s11423-018-9581-2
Marín-Díaz, V., Sampedro Requena, B. E. y Vega Gea, E. (2022). La realidad virtual y aumentada en el aula de secundaria. Campus Virtuales, 11(1), 225-236. https://doi.org/10.54988/cv.2022.1.1030 DOI: https://doi.org/10.54988/cv.2022.1.1030
Marks, B., & Thomas, J. (2022). Adoption of virtual reality technology in higher education: An evaluation of five teaching semesters in a purpose-designed laboratory. Education and Information Technologies, 27(1), 1287-1305. https://doi.org/10.1007/s10639-021-10653-6 DOI: https://doi.org/10.1007/s10639-021-10653-6
Martínez-Pérez, S., Fernández-Robles, B. y Barroso-Osuna, J. (2021). La realidad aumentada como recurso para la formación en la educación superior. Campus Virtuales, 10(1), 9-19.
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1 DOI: https://doi.org/10.1186/2046-4053-4-1
Pande P., Thit A., Sørensen A. E., Mojsoska B., Moeller M. E., & Jepsen P. M. (2021). Long-term effectiveness of immersive VR simulations in undergraduate science learning: lessons from a media-comparison study. Research in Learning Technology, 29. https://doi.org/10.25304/rlt.v29.2482 DOI: https://doi.org/10.25304/rlt.v29.2482
Parong, J., Pollard, K. A., Files, B. T., Oiknine, A. H., Sinatra, A. M., Moss, J. D., Khooshabeh, P. (2020). The mediating role of presence differs across types of spatial learning in immersive technologies. Computers in Human Behavior, 107 https://doi.org/10.1016/j.chb.2020.106290 DOI: https://doi.org/10.1016/j.chb.2020.106290
Reinke, N. B., Kynn, M., & Parkinson, A. L. (2021). Immersive 3d experience of osmosis improves learning outcomes of first-year cell biology students. CBE—Life Sciences Education, 20(1), ar1. https://doi.org/10.1187/cbe.19-11-0254 DOI: https://doi.org/10.1187/cbe.19-11-0254
Shadiev, R., Wang, X., & Huang, Y.-M. (2021). Cross-Cultural Learning in Virtual Reality Environment: Facilitating Cross-Cultural Understanding, Trait Emotional Intelligence, and Sense of Presence. Educational Technology Research and Development, 69(5), 2917–2936. https://doi.org/10.1007/s11423-021-10044-1 DOI: https://doi.org/10.1007/s11423-021-10044-1
Shelton, B. E., & Hedley, N. R. (2002). Using augmented reality for teaching Earth-Sun relationships to undergraduate geography students. 1st IEEE International Augmented Reality Toolkit Workshop, Proceedings. Institute of Electrical and Electronics Engineers Inc. https://doi.org/https://doi.org/10.1109/ART.2002.1106948 DOI: https://doi.org/10.1109/ART.2002.1106948
Singhal, S., Bagga, S., Goyal, P., & Saxena, V. (2012). Augmented Chemistry: Interactive Education System. International Journal of Computer Applications, 4(15), 1–5. https://doi.org/https://doi.org/10.5120/7700-1041 DOI: https://doi.org/10.5120/7700-1041
Sirakaya, M., & Cakmak, E. K. (2018). Effects of augmented reality on student achievement and self-efficacy in vocational education and training. International Journal for Research in Vocational Education and Training, 5(1), 1–18. https://doi.org/https://doi.org/10.13152/IJRVET.5.1.1 DOI: https://doi.org/10.13152/IJRVET.5.1.1
Taçgin, Z. (2020). The Perceived Effectiveness Regarding Immersive Virtual Reality Learning Environments Changes by the Prior Knowledge of Learners. Education and Information Technologies, 25(4), 2791–2809. https://doi.org/10.1007/s10639-019-10088-0 DOI: https://doi.org/10.1007/s10639-019-10088-0
Takagi, D., Hayashi, M., Iida, T., Tanaka, Y., Sugiyama, S., Nishizaki, H., & Morimoto, Y. (2019). Effects of dental students' training using immersive virtual reality technology for home dental practice. Educational Gerontology, 45(11), 670–680. https://doi.org/10.1080/03601277.2019.1686284 DOI: https://doi.org/10.1080/03601277.2019.1686284
Urrutia, G. y Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/PRISMA_Spanish.pdf DOI: https://doi.org/10.1016/j.medcli.2010.01.015
Yuen, S., Yaoyuneyong, G., & Johnson, E. (2011). Augmented reality: An overview and five direc-tions for AR in education. Journal of Educational Technology Development and Exchange (JETDE), 4(1), 119–140. https://doi.org/https://doi.org/10.18785/jetde.0401.10 DOI: https://doi.org/10.18785/jetde.0401.10
Zhao, J., Wallgrün, J. O., Sajjadi, P., LaFemina, P., Lim, K. Y. T., Springer, J. P., & Klippel, A. (2022). Longitudinal effects in the effectiveness of educational virtual field trips. Journal of Educational Computing Research, 60(4), 1008-1034. https://doi.org/10.1177/07356331211062925 DOI: https://doi.org/10.1177/07356331211062925
Zhou, C., Li, H., & Bian, Y. (2020). Identifying the optimal 3D display technology for hands-on virtual experiential learning: A comparison study. IEEE Access, 8, 73791-73803. https://doi.org/10.1109/ACCESS.2020.2988678 DOI: https://doi.org/10.1109/ACCESS.2020.2988678
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Edutec, Revista Electrónica de Tecnología Educativa

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Con la entrega del trabajo, los autores ceden los derechos de publicación a la revista Edutec. Por su parte, Edutec autoriza su distribución siempre que no se altere su contenido y se indique su origen. Al final de cada artículo publicado en Edutec se indica cómo se debe citar.
La dirección y el consejo de redacción de Edutec Revista Electrónica de Tecnología Educativa, no aceptan ninguna responsabilidad sobre las afirmaciones e ideas expresadas por los autores en sus trabajos.