Design and simulation of a predictive model for the evaluation of teachers' digital competence using Machine Learning techniques
DOI:
https://doi.org/10.21556/edutec.2024.89.3201Keywords:
teachers' digital competence, machine learning, artificial intelligence, adaptive learning, emerging technologyAbstract
Machine Learning (ML) is a field of artificial intelligence that uses techniques to make predictions from massive data. Teachers’ Digital Competence (TDC) commonly refers to teachers' skills and abilities in digital systems and their application in teaching and learning processes. TDC research is important for institutions, since student learning, trajectory, direction, and behavior depend on its evaluation. TDC in Colombia is based on 5 elements: Communicative, management, investigative, pedagogy and technology, and each of them is measured at three levels: exploratory, integrative, and innovative. The research questions are: (1) What kind of results can we expect from CDD prediction with ML techniques? (2) What ML techniques are effective in predicting TDC? (3) What are the advantages of predicting TDC with ML techniques? The methodology aims to design a prediction model of TDC in Colombia through the application of 9 ML techniques using Orange Data Mining software. The results show the high effectiveness of intelligent techniques to predict TDC. The model demonstrates that it is feedbackable, scalable and allows proposing personalized learning itineraries.
Downloads
References
Bartolomé, A., Castañeda, L., & Adell, J. (2018). Personalisation in educational technology: the absence of underlying pedagogies. International Journal of Educational Technology in Higher Education, 15(1). https://doi.org/10.1186/s41239-018-0095-0 DOI: https://doi.org/10.1186/s41239-018-0095-0
Bearman, M., & Ajjawi, R. (2023). Learning to work with the black box: Pedagogy for a world with artificial intelligence. British Journal of Educational Technology, 54(5), 1160–1173. https://doi.org/10.1111/bjet.13337 DOI: https://doi.org/10.1111/bjet.13337
Belmonte, J. L., Segura-Robles, A., Moreno-Guerrero, A. J., & Parra-González, M. E. (2020). Machine learning and big data in the impact literature. A bibliometric review with scientific mapping in web of science. Symmetry, 12(4). https://doi.org/10.3390/SYM12040495 DOI: https://doi.org/10.3390/sym12040495
Cabero-Almenara, J., Barroso-Osuna, J., Llorente-Cejudo, C., & Palacios-Rodríguez, A. (2022). Validación Del Marco Europeo De Competencia Digital Docente Mediante Ecuaciones Estructurales. Revista Mexicana de Investigacion Educativa, 27(92), 185–208.
Cabero-Almenara, J., & Palacios-Rodríguez, A. (2020). Marco Europeo de Competencia Digital Docente «DigCompEdu». Traducción y adaptación del cuestionario «DigCompEdu Check-In». Edmetic, 9(1), 213–234. https://doi.org/10.21071/edmetic.v9i1.12462 DOI: https://doi.org/10.21071/edmetic.v9i1.12462
Cabero-Almenara, J., Romero-Tena, R., Barroso-Osuna, J., & Palacios-Rodríguez, A. (2020). Marcos de Competencias Digitales Docentes y su adecuación al profesorado universitario y no universitario. RECIE. Revista Caribeña de Investigación Educativa, 4(2), 137–158. https://doi.org/10.32541/recie.2020.v4i2.pp137-158 DOI: https://doi.org/10.32541/recie.2020.v4i2.pp137-158
Caglayan, C. (2019). Comparison of the Code-based or Tool-based Teaching of the Machine Learning Algorithm for the First-Time Learners. 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings, November 2019. https://doi.org/10.1109/UBMYK48245.2019.8965519 DOI: https://doi.org/10.1109/UBMYK48245.2019.8965519
Dai, Y., Liu, A., Qin, J., Guo, Y., Jong, M. S. Y., Chai, C. S., & Lin, Z. (2022). Collaborative construction of artificial intelligence curriculum in primary schools. Journal of Engineering Education, October 2022, 23–42. https://doi.org/10.1002/jee.20503 DOI: https://doi.org/10.1002/jee.20503
De Benito, B., Moreno García, J., & Villatoro Moral, S. (2020). Entornos tecnológicos en el codiseño de itinerarios personalizados de aprendizaje en la enseñanza superior. Edutec. Revista Electrónica de Tecnología Educativa, 74, 73–93. https://doi.org/10.21556/edutec.2020.74.1843 DOI: https://doi.org/10.21556/edutec.2020.74.1843
De Benito, B., & Salinas, J. M. (2016). La Investigación Basada en Diseño en Tecnología Educativa Design-Based Research in Educational Technology. Revista Interuniversitaria de Investigación En Tecnología Educativa, 0(1), 44–59.
Denys, B., & Klimczuk, B. (2022). International Cooperation Towards Digital Transformation and Digital Ecosystems in Education. 589–593. DOI: https://doi.org/10.23919/MIPRO55190.2022.9803524
Dúo Terrón, P., Moreno Guerrero, A. J., López Belmonte, J., & Marín Marín, J. A. (2023). Inteligencia Artificial y Machine Learning como recurso educativo desde la perspectiva de docentes en distintas etapas educativas no universitarias. Revista Interuniversitaria de Investigación En Tecnología Educativa, 58–78. https://doi.org/10.6018/riite.579611 DOI: https://doi.org/10.6018/riite.579611
Elliot, Jaime; Gorichon, Solange; Irigoin, María; Maurizi, M. R. (2011). Competencias y Estándares TIC para la Profesión Docente. 98.
Esquivel Gámez, I. (2014). Los Modelos Tecno-Educativos, revolucionando el aprendizaje del siglo XXI. In Nucl. Phys. (Vol. 13, Issue 1). https://www.researchgate.net/publication/280301257_Los_Modelos_Tecno-Educativos_revolucionando_el_aprendizaje_del_siglo_XXI
Flores, N., Castelán, V., & Zamora, M. (2021). Evaluación del perfil del profesorado a partir de los atributos del desempeño docente. Revista Innova Educación, 3(3), 53–72. https://doi.org/10.35622/j.rie.2021.03.003 DOI: https://doi.org/10.35622/j.rie.2021.03.003
Forero-Corba, W., & Bennasar, F. N. (2024). Técnicas y aplicaciones del Machine Learning e Inteligencia Artificial en educación: una revisión sistemática. RIED-Revista Iberoamericana de Educacion a Distancia, 27(1), 209–253. https://doi.org/10.5944/ried.27.1.37491
Forero-Corba, W., & Negre Bennasar, F. (2024). Techniques and applications of Machine Learning and Artificial Intelligence in education: a systematic review. RIED-Revista Iberoamericana de Educacion a Distancia, 27(1), 209–253. https://doi.org/10.5944/ried.27.1.37491 DOI: https://doi.org/10.5944/ried.27.1.37491
García Tamarit, C. O. N. S. U. E. L. O., Perochena González, P. A. O. L. A., & Orcos Palma, L. A. R. A. (2021). The design and validation of an instrument for assessing undergraduate dissertations. Bordon. Revista de Pedagogia, 73(2), 79–96. https://doi.org/10.13042/Bordon.2021.89015 DOI: https://doi.org/10.13042/Bordon.2021.89015
García-Ruiz, R., Buenestado-Fernández, M., & Ramírez-Montoya, M. S. (2023). Assessment of Digital Teaching Competence: Instruments, results and proposals. Systematic literature review. Educacion XX1, 26(1), 273–301. https://doi.org/10.5944/educxx1.33520 DOI: https://doi.org/10.5944/educxx1.33520
Gisbert, M., & Lázaro, J. (2018). Una Rubrica Para Evaluar La Competencia Digital Del Profesor Universitario En El Contexto Latinoamericano a Rubric To Evaluate the Digital Competence of the University. EDUTEC Revista Electrónica de Tecnología Educativa., 0(63), 1–14.
Gómez, R., Palacios, A., Moreno-Mediavilla, D., & Barreras, Á. (2022). Teacher competences in the use of STEM virtual simulations: design and validation of a measurement instrument (CDUSV). Bordon. Revista de Pedagogia, 74(4), 85–102. https://doi.org/10.13042/Bordon.2022.94154 DOI: https://doi.org/10.13042/Bordon.2022.94154
Houngue, P., Hountondji, M., & Dagba, T. (2022). An Effective Decision-Making Support for Student Academic Path Selection using Machine Learning. International Journal of Advanced Computer Science and Applications, 13(11), 727–734. https://doi.org/10.14569/IJACSA.2022.0131184 DOI: https://doi.org/10.14569/IJACSA.2022.0131184
INTEF. (2017). MARCO COMÚN DE COMPETENCIA DIGITAL DOCENTE.
International Society for Technology in Education. (2019). ISTE Standars.
López, R., Avello, R., Palmero, D. E., Sánchez, S., & Quintana, M. (2019). Validation of instruments as a guarantee of credibility in scientific research. Revista Cubana de Medicina Militar, 48(2), 441–450.
Lucas, M., Bem-Haja, P., Siddiq, F., Moreira, A., & Redecker, C. (2021). The relation between in-service teachers’ digital competence and personal and contextual factors: What matters most? Computers and Education, 160(October 2020). https://doi.org/10.1016/j.compedu.2020.104052 DOI: https://doi.org/10.1016/j.compedu.2020.104052
Mantilla Contreras, M. A. (2022). MODELO DE FORMACIÓN PARA EL DESARROLLO DE COMPETENCIAS DIGITALES EN DOCENTES DE UNA UNIVERSIDAD DEL NORORIENTE COLOMBIANO. Universidad de les Illes Balears.
Ministerio de Educación Nacional. (2013). Competencias TIC Para el Desarrollo Profesional Docente. In Imprenta Nacional (Oficina de, Vol. 82).
Moreno Padilla, R. D. (2019). La llegada de la inteligencia artificial a la educación. Revista de Investigación En Tecnologías de La Información, 7(14), 260–270. https://doi.org/10.36825/riti.07.14.022 DOI: https://doi.org/10.36825/RITI.07.14.022
Organización de la Naciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible Una oportunidad para América Latina y el Caribe Gracias por su interés en esta publicación de la CEPAL. In Publicación de las Naciones Unidas.
Pérez-Escoda, A., Iglesias-Rodríguez, A., Meléndez-Rodríguez, Lady, & Berrocal-Carvajal, V. (2021). Competencia digital docente para la reducción de la brecha digital: Estudio comparativo de España y Costa Rica. Tripodos, 46, 77–96. https://doi.org/10.51698/tripodos.2020.46p77-96 DOI: https://doi.org/10.51698/tripodos.2020.46p77-96
Prendes Espinosa, M. a P., Solano Fernández, I. M., Serrano Sánchez, J. L., González Calatayud, V., & Román García, M. a del M. (2018). Entornos Personales de Aprendizaje para la comprensión y desarrollo de la Competencia Digital: análisis de los estudiantes universitarios en España. Educatio Siglo XXI, 36(2 Julio), 115. https://doi.org/10.6018/j/333081 DOI: https://doi.org/10.6018/j/333081
Ramírez Martínez, J. L. (2019). El proceso de elaboración y validación de un instrumento de medición documental. Acción y Reflexión Educativa, 44, 50–63.
Redecker, C. (2020). Marco Europeo para la Competencia Digital de los Educadores: DigCompEdu. In Secretaría General Técnica del Ministerio de Educación y Formación Profesional de España (Originalpublicado en 2017).
Salas-Pilco, S. Z., Xiao, K., & Hu, X. (2022). Artificial Intelligence and Learning Analytics in Teacher Education: A Systematic Review. Education Sciences, 12(8). https://doi.org/10.3390/educsci12080569 DOI: https://doi.org/10.3390/educsci12080569
Salinas Ibáñez, J. M., & Agudelo Velásquez, O. L. (2016). Itinerarios flexibles de aprendizaje y mapas conceptuales: un abánico de posibilidades para todos los niveles educativos. Proc. of the Seventh Int. Conference on Concept Mapping, Tabla 1.
Salinas Ibáñez, J. M., & de Benito Crosetti, B. L. (2020). Construcción de itinerarios personalizados de aprendizaje mediante métodos mixtos. Comunicar, 65, 31–42. https://doi.org/https://doi.org/10.3916/C65-2020-03 DOI: https://doi.org/10.3916/C65-2020-03
Salmerón Majadas, S. (2018). A Methodological Approach based on Machine Learning to Generate a Multimodal User’s Affective State Model in Adaptive Educational Systems.
Silva, J., Usart, M., & Lázaro-Cantabrana, J. L. (2019). Teacher’s digital competence among final year Pedagogy students in Chile and Uruguay. Comunicar, 27(61), 31–40. https://doi.org/10.3916/C61-2019-03 DOI: https://doi.org/10.3916/C61-2019-03
Suárez-Guerrero, C., Rivera-Vargas, P., & Rebour, M. (2020). Preguntas educativas para la tecnología digital como respuesta. Edutec. Revista Electrónica de Tecnología Educativa, 73, 7–22. https://doi.org/10.21556/edutec.2020.73.1733 DOI: https://doi.org/10.21556/edutec.2020.73.1733
Tarik, A., Aissa, H., & Yousef, F. (2021). Artificial intelligence and machine learning to predict student performance during the COVID-19. Procedia Computer Science, 184, 835–840. https://doi.org/10.1016/j.procs.2021.03.104 DOI: https://doi.org/10.1016/j.procs.2021.03.104
Touron, J., Martin, D., Navarro Asencio, E., Pradas, S., & Inigo, V. (2018). Validation de constructo de un instrumento para medir la competencia digital docente de los profesores (CDD). Revista Espanola de Pedagogia, 75(269), 25–54. https://doi.org/10.22550/REP76-1-2018-02 DOI: https://doi.org/10.22550/REP76-1-2018-02
UNESCO. (2019). CONSENSO DE BEIJING sobre la inteligencia artificial y la educación. 26–39. https://unesdoc.unesco.org/ark:/48223/pf0000368303?posInSet=3&queryId=N-EXPLORE-e2652983-c3e5-4aba-9a2e-13341d1392aa
UNESCO. (2021). Marco de competencias docentes en materia de TIC. In UNESCO Publishing.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Edutec. Revista Electrónica de Tecnología Educativa

This work is licensed under a Creative Commons Attribution 4.0 International License.
By submitting the paper, the authors assign the publication rights to the journal Edutec. For its part, Edutec authorises its distribution as long as its content is not altered and its origin is indicated. At the end of each article published in Edutec, the citation procedure is indicated.
The management and editorial board of Edutec Revista Electrónica de Tecnología Educativa do not accept any responsibility for the statements and ideas expressed by the authors in their work.
Translated with www.DeepL.com/Translator (free version)